INT | Nanostructured Materials

List of Publications


Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors.
Jeong, J.; Singaraju, S. A.; Aghassi‐Hagmann, J.; Hahn, H.; Breitung, B.
2020. ChemElectroChem, 7 (13), 2692. doi:10.1002/celc.202000687
ALD-Derived, Low-Density Alumina as Solid Electrolyte in Printed Low-Voltage FETs.
Neuper, F.; Marques, G. C.; Singaraju, S. A.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2020. IEEE transactions on electron devices, 1–6. doi:10.1109/TED.2020.3005624
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates.
Singaraju, S. A.; Marques, G. C.; Gruber, P.; Kruk, R.; Hahn, H.; Breitung, B.; Aghassi-Hagmann, J.
2020. Physica status solidi / Rapid research letters, Art.Nr. 2000252. doi:10.1002/pssr.202000252
High entropy oxides: The role of entropy, enthalpy and synergy.
Sarkar, A.; Breitung, B.; Hahn, H.
2020. Scripta materialia, 187, 43–48. doi:10.1016/j.scriptamat.2020.05.019
Tailored Silicon/Carbon Compounds for Printed Li–Ion Anodes.
Sukkurji, P. A.; Issac, I.; Singaraju, S. A.; Velasco, L.; Hagmann, J. A.; Bessler, W.; Hahn, H.; Botros, M.; Breitung, B.
2020. Batteries & supercaps, batt.202000052. doi:10.1002/batt.202000052
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry.
Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
Modeling and Characterization of Low Voltage, Inkjet Printed Devices and Circuits.
Marques, G. C.; Rasheed, F.; Breitung, B.; Hahn, H.; Tahoori, M.; Aghassi-Hagmann, J.
2018. Internationale Fachmesse und Kongress für gedruckte Elektronik (LOPEC 2018), Munich, Germany, March 14–15, 2018
Development of Fully Printed Electrolyte-Gated Oxide Transistors Using Graphene Passive Structures.
Singaraju, S. A.; Baby, T. T.; Neuper, F.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2019. ACS applied electronic materials, 1 (8), 1538–1544. doi:10.1021/acsaelm.9b00313
Tailoring Threshold Voltages of Printed Electrolyte-Gated Field-Effect Transistors by Chromium Doping of Indium Oxide Channels.
Neuper, F.; Chandresh, A.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2019. ACS omega, 4 (24), 20579–20585. doi:10.1021/acsomega.9b02513
Ink‐Jet Printable, Self‐Assembled, and Chemically Crosslinked Ion‐Gel as Electrolyte for Thin Film, Printable Transistors.
Jeong, J.; Marques, G. C.; Feng, X.; Boll, D.; Singaraju, S. A.; Aghassi‐Hagmann, J.; Hahn, H.; Breitung, B.
2019. Advanced materials interfaces, 6 (21), 1901074. doi:10.1002/admi.201901074
Thin Films of Thermally Stable Ordered Mesoporous Rh₂O₃(I) for Visible-Light Photocatalysis and Humidity Sensing.
Dubraja, L. A.; Boll, D.; Reitz, C.; Wang, D.; Belić, D.; Mazilkin, A.; Breitung, B.; Hahn, H.; Elm, M. T.; Brezesinski, T.
2019. ACS applied nano materials, 2 (11), 7126–7133. doi:10.1021/acsanm.9b01654
On the homogeneity of high entropy oxides: An investigation at the atomic scale.
Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039
Reversible control of magnetism: On the conversion of hydrated FeF3 with Li to Fe and LiF.
Singh, R.; Witte, R.; Mu, X.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B.
2019. Journal of materials chemistry / A, 7 (41), 24005–24011. doi:10.1039/c9ta08928d
Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries.
Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Energy & environmental science, 12 (8), 2433–2442. doi:10.1039/c9ee00368a
Influence of Humidity on the Performance of Composite Polymer Electrolyte-Gated Field-Effect Transistors and Circuits.
Marques, G. C.; Von Seggern, F.; Dehm, S.; Breitung, B.; Hahn, H.; Dasgupta, S.; Tahoori, M. B.; Aghassi-Hagmann, J.
2019. IEEE transactions on electron devices, 66 (5), 2202–2207. doi:10.1109/TED.2019.2903456
High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties.
Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
2019. Advanced materials, 1806236. doi:10.1002/adma.201806236
High entropy oxides as anode material for Li-ion battery applications: A practical approach.
Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: Investigation into volume expansion, gas evolution, and particle fracture.
Schiele, A.; Breitung, B.; Mazilkin, A.; Schweidler, S.; Janek, J.; Gumbel, S.; Fleischmann, S.; Burakowska-Meise, E.; Sommer, H.; Brezesinski, T.
2018. ACS omega, 3 (12), 16706–16713. doi:10.1021/acsomega.8b02541
Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries.
Breitung, B.; Schneider, A.; Chakravadhanula, V. S. K.; Suchomski, C.; Janek, J.; Sommer, H.; Brezesinski, T.
2018. Batteries & Supercaps, 1 (1), 27–32. doi:10.1002/batt.201700004
Facile synthesis of C–FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage.
Reddy, M. A.; Breitung, B.; Kiran Chakravadhanula, V. S.; Helen, M.; Witte, R.; Rongeat, C.; Kübel, C.; Hahn, H.; Fichtner, M.
2018. RSC Advances, 8 (64), 36802–36811. doi:10.1039/C8RA07378C
Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices.
Garlapati, S. K.; Divya, M.; Breitung, B.; Kruk, R.; Hahn, H.; Dasgupta, S.
2018. Advanced materials, 30 (40), Art. Nr.: 1707600. doi:10.1002/adma.201707600
High entropy oxides for reversible energy storage.
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B.
2018. Nature Communications, 9 (1), Article number: 3400. doi:10.1038/s41467-018-05774-5
Formation of nanocrystalline graphene on germanium.
Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
Solution processed hybrid field effect transistors based on graphene electrodes.
Singaraju, S. A.; Baby, T. T.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS, Fachverband Halbleiterphysik (2018), Berlin, Germany, March 11–16, 2018
Towards high-performance printed in-plane and vertical MOSFETs.
Neuper, F.; Kruk, R.; Hahn, H.; Breitung, B.
2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS, Fachverband Halbleiterphysik (2018), Berlin, Germany, March 11–16, 2018
Synthesis and characterization of graphite oxide based ink for printed transistors.
Baby, T. T.; Chandresh, A.; Singaraju, S. A.; Breitung, B.; Hahn, H.
2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (2018), Berlin, Germany, March 11–16, 2018
Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.
Breitung, B.; Aguiló-Aguayo, N.; Bechtold, T.; Hahn, H.; Janek, J.; Brezesinski, T.
2017. Scientific reports, 7, 13010. doi:10.1038/s41598-017-13261-y
[Ag₁₁₅S₃₄(SCH₂C₆H₄ tBu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster.
Bestgen, S.; Fuhr, O.; Breitung, B.; Chakravadhanula, V. S. K.; Guthausen, G.; Hennrich, F.; Yu, W.; Kappes, M. M.; Roesky, P. W.; Fenske, D.
2017. Chemical science, 8 (3), 2235–2240. doi:10.1039/c6sc04578b
Microwave synthesis of high-quality and uniform 4 nm ZnFe₂O₄ nanocrystals for application in energy storage and nanomagnetics.
Suchomski, C.; Breitung, B.; Witte, R.; Knapp, M.; Bauer, S.; Baumbach, T.; Reitz, C.; Brezesinski, T.
2016. Beilstein journal of nanotechnology, 7, 1350–1360. doi:10.3762/bjnano.7.126
In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries.
Breitung, B.; Baumann, P.; Sommer, H.; Janek, J.; Brezesinski, T.
2016. Nanoscale, 8 (29), 14048–14056. doi:10.1039/c6nr03575b
Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.
Reitz, C.; Breitung, B.; Schneider, A.; Wang, D.; Lehr, M. von der; Leichtweiss, T.; Janek, J.; Hahn, H.; Brezesinski, T.
2016. ACS applied materials & interfaces, 8 (16), 10274–10282. doi:10.1021/acsami.5b12361
Facile Synthesis of Carbon-Metal Fluoride Nanocomposites for Lithium-Ion Batteries.
Reddy, M. A.; Breitung, B.; Wall, C.; Trivedi, S.; Chakravadhanula, V. S. K.; Helen, M.; Fichtner, M.
2016. Energy technology, 4 (1), 201–211. doi:10.1002/ente.201500358
Fe basierte Konversionsmaterialien für Li-Ionen Sekundärbatterien. PhD dissertation.
Breitung, B.
2013. Dissertation, Karlsruher Institut für Technologie 2013
TEM investigations on FeF₂ based nanocomposite battery materials.
Chakravadhanula, V. S. K.; Kübel, C.; Reddy, M. A.; Breitung, B.; Powell, A. K.; Fichtner, M.; Hahn, H.
2013. Microscopy and microanalysis, 19 (Suppl. S2), 1524–1525. doi:10.1017/S1431927613009616
Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storage.
Breitung, B.; Reddy, M. A.; Chakravadhanula, V. S. K.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M.
2013. Beilstein journal of nanotechnology, 4, 705–713. doi:10.3762/bjnano.4.80
Improving the energy density and power density of CFₓ by mechanical milling: A primary lithium battery electrode.
Reddy, M. A.; Breitung, B.; Fichtner, M.
2013. ACS Applied Materials and Interfaces, 5, 11207–11211. doi:10.1021/am403438m
CFx derived carbon-FeF₂ nanocomposites for reversible lithium storage.
Reddy, M. A.; Breitung, B.; Chakravadhanula, V. S. K.; Wall, C.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M.
2013. Advanced energy materials, 3, 308–313. doi:10.1002/aenm.201200788
CFx derived carbon-FeF₂ nanocomposites for reversible lithium storage.
Breitung, B.; Reddy, M. A.; Fichtner, M.
2012. 11th Internat.Conf.on Nanostructured Materials (Nano 2012), Rhodos, GR, August 26-31, 2012
Functionalized silver chalcogenide clusters.
Langer, R.; Breitung, B.; Wünsche, L.; Fenske, D.; Fuhr, O.
2011. Zeitschrift für Anorganische und Allgemeine Chemie, 637, 995–1005. doi:10.1002/zaac.201100018
M/LiF/Nanocarbon composites as conversion electrode materials in lithium batteries.
Prakash, R.; Breitung, B.; Walls, C.; Rödern, E.; Kübel, C.; Hahn, H.; Fichtner, M.
2010. Internat.Workshop on Fluorinated Materials and Energy Conversion, Bordeaux, F, April 12-13, 2010
complex hydrides as solid storage materials: first safety tests.
Lohstroh, W.; Fichtner, M.; Breitung, W.
2009. International Journal of Hydrogen Energy, 34, 5981–85. doi:10.1016/j.ijhydene.2009.01.030
Safety studies on Ti-doped NaAlH₄ in a tank failure test.
Lohstroh, W.; Fichtner, M.; Breitung, W.
2008. Hydrogen Storage for Automotive Applications : Final Dissemination Event Integrated Project StorHy, Paris, F, June 3-4, 2008
Ti-doped NaAlH₄ in a tank failure test.
Lohstroh, W.; Breitung, W.; Fichtner, M.
2008. Hydrogen Storage for Automotive Applications : Final Dissemination Event Integrated Project StorHy, Paris, F, June 3-4, 2008
Complex hydrides as solid storage materials: first safety tests.
Lohstroh, W.; Fichtner, M.; Breitung, W.
2007. 2nd Internat.Conf.on Hydrogen Safety (ICHS), San Sebastian, E, September 11-13, 2007
Sicherheitstest in einem nanoskaligen H-Speichermaterial.
Lohstroh, W.; Fichtner, M.; Breitung, W.
2005. Wasserstofftag, Karlsruhe, 14.November 2005 (Poster)
Wasserstoffspeichermaterialien für Brennstoffzellenanwendungen.
Fichtner, M.; Breitung, W.
2005. Nachrichten - Forschungszentrum Karlsruhe, 37, 129–34
Ti-doped NaAlH₄ in a tank failure test.
Lohstroh, W.; Fichtner, M.; Breitung, W.
2005. Gordon Research Conf.on Hydrogen-Metal Systems, Waterville, Maine, July 10-15, 2005 Internat.Conf.on Hydrogen Safety, Pisa, I, September 8-10, 2005