INT | Research Unit Krupke

Publications


2020
Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers.
Kumar, S.; Dagli, D.; Dehm, S.; Das, C.; Wei, L.; Chen, Y.; Hennrich, F.; Krupke, R.
2020. Physica status solidi / Rapid research letters, Art.Nr. 2000193. doi:10.1002/pssr.202000193Full textFull text of the publication as PDF document
Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation.
Nagyte, V.; Kelly, D. J.; Felten, A.; Picardi, G.; Shin, Y.; Alieva, A.; Worsley, R. E.; Parvez, K.; Dehm, S.; Krupke, R.; Haigh, S. J.; Oikonomou, A.; Pollard, A. J.; Casiraghi, C.
2020. Nano letters, 20 (5), 3411–3419. doi:10.1021/acs.nanolett.0c00332
Electrostatic superlattices on scaled graphene lattices.
Chen, S.-C.; Kraft, R.; Danneau, R.; Richter, K.; Liu, M.-H.
2020. Communications Physics, 3 (1), Article: 71. doi:10.1038/s42005-020-0335-1Full textFull text of the publication as PDF document
Berry phase in superconducting multiterminal quantum dots.
Douçot, B.; Danneau, R.; Yang, K.; Caputo, J.-G.; Mélin, R.
2020. Physical review / B, 101 (3), Art.-Nr. 035411. doi:10.1103/PhysRevB.101.035411
Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
Gaulke, M.; Janissek, A.; Peyyety, N. A.; Alamgir, I.; Riaz, A.; Dehm, S.; Li, H.; Lemmer, U.; Flavel, B. S.; Kappes, M. M.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R.
2020. ACS nano, 14 (3), 2709–2717. doi:10.1021/acsnano.9b07207
Front and Back‐Junction Carbon Nanotube‐Silicon Solar Cells with an Industrial Architecture.
Chen, J.; Tune, D. D.; Ge, K.; Li, H.; Flavel, B. S.
2020. Advanced functional materials, 30 (17), Art. Nr.: 2000484. doi:10.1002/adfm.202000484Full textFull text of the publication as PDF document
Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime.
Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S.; Zheng, M.; Fagan, J. A.; Flavel, B. S.
2020. ACS nano, 14 (1), 948–963. doi:10.1021/acsnano.9b08244
Breakthrough Carbon Nanotube–Silicon Heterojunction Solar Cells.
Tune, D. D.; Mallik, N.; Fornasier, H.; Flavel, B. S.
2020. Advanced energy materials, 10 (1), Article No.1903261. doi:10.1002/aenm.201903261Full textFull text of the publication as PDF document
2019
Asymmetry of resonance Raman profiles in semiconducting single-walled carbon nanotubes at the first excitonic transition.
Gordeev, G.; Flavel, B.; Krupke, R.; Kusch, P.; Reich, S.
2019. Physical review / B, 99 (4), Art. Nr.: 045404. doi:10.1103/PhysRevB.99.045404
Ostwald-like Ripening in Highly Defective Graphene [in press].
Kumar, C. N. S.; Konrad, M.; Wenzel, W.; Krupke, R.; Kübel, C.
2019. Imaging & microscopy
Andreev reflection in ballistic normal metal/graphene/superconductor junctions.
Pandey, P.; Kraft, R.; Krupke, R.; Beckmann, D.; Danneau, R.
2019. Physical review / B, 100 (16), Article No.165416. doi:10.1103/PhysRevB.100.165416
Investigation on Metal-Oxide Graphene Field-Effect Transistors with clamped geometries.
Giambra, M. A.; Benz, C.; Wu, F.; Thurmer, M.; Balachandran, G.; Benfante, A.; Pernice, R.; Pandey, H.; Boopathi, M.; Jang, M.; Ahn, J.; Stivala, S.; Calandra, E.; Arnone, C.; Cusumano, P.; Busacca, A.; Pernice, W. H. P.; Danneau, R.
2019. IEEE journal of the Electron Devices Society, 7, 964–968. doi:10.1109/JEDS.2019.2939574Full textFull text of the publication as PDF document
Engineering the Floquet spectrum of superconducting multiterminal quantum dots.
Mélin, R.; Danneau, R.; Yang, K.; Caputo, J.-G.; Douçot, B.
2019. Physical review / B, 100 (3), Art. Nr.: 035450. doi:10.1103/PhysRevB.100.035450
Nanocrystalline graphene at high temperatures: Insight into nanoscale processes.
Shyam Kumar, C. N.; Konrad, M.; Chakravadhanula, V. S. K.; Dehm, S.; Wang, D.; Wenzel, W.; Krupke, R.; Kübel, C.
2019. Nanoscale advances, 1 (7), 2485–2494. doi:10.1039/c9na00055k
Stability of Chemically Doped Nanotube-Silicon Heterojunction Solar Cells: Role of Oxides at the Carbon-Silicon Interface.
Tune, D. D.; Shirae, H.; Lami, V.; Headrick, R. J.; Pasquali, M.; Vaynzof, Y.; Noda, S.; Hobbie, E. K.; Flavel, B. S.
2019. ACS applied energy materials, 2 (8), 5925–5932. doi:10.1021/acsaem.9b01050
Measuring in Situ Length Distributions of Polymer-Wrapped Monochiral Single-Walled Carbon Nanotubes Dispersed in Toluene with Analytical Ultracentrifugation.
Selvasundaram, P. B.; Kraft, R.; Li, W.; Fischer, R.; Kappes, M. M.; Hennrich, F.; Krupke, R.
2019. Langmuir, 35 (10), 3790–3796. doi:10.1021/acs.langmuir.9b00005
Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction.
Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S.
2019. ACS nano, 13 (2), 2567–2578. doi:10.1021/acsnano.8b09579
Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study.
Giambra, M. A.; Benfante, A.; Pernice, R.; Miseikis, V.; Fabbri, F.; Reitz, C.; Pernice, W. H. P.; Krupke, R.; Calandra, E.; Stivala, S.; Busacca, A. C.; Danneau, R.
2019. ACS omega, 4 (1), 2256–2260. doi:10.1021/acsomega.8b02836
Near-Infrared Photoresponse of Waveguide-Integrated Carbon Nanotube-Silicon Junctions.
Riaz, A.; Alam, A.; Selvasundaram, P. B.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Krupke, R.
2019. Advanced electronic materials, 5 (1), 1800265. doi:10.1002/aelm.201800265
2018
Advances in Carbon Nanotube-Silicon Heterojunction Solar Cells.
Tune, D. D.; Flavel, B. S.
2018. Advanced energy materials, 8 (15), Art.-Nr.: 1703241. doi:10.1002/aenm.201703241
Carbon nanotubes as emerging quantum-light sources.
He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C.
2018. Nature materials, 17 (8), 663–670. doi:10.1038/s41563-018-0109-2
Valley Subband Splitting in Bilayer Graphene Quantum Point Contacts.
Kraft, R.; Krainov, I. V.; Gall, V.; Dmitriev, A. P.; Krupke, R.; Gornyi, I. V.; Danneau, R.
2018. Physical review letters, 121 (25). doi:10.1103/PhysRevLett.121.257703
Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets.
McManus, D.; Dal Santo, A.; Selvasundaram, P. B.; Krupke, R.; Libassi, A.; Casiraghi, C.
2018. Flexible and printed electronics, 3 (3), Art. Nr.: 034005. doi:10.1088/2058-8585/aaddb5Full textFull text of the publication as PDF document
Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration.
Engel, M.; Farmer, D. B.; Azpiroz, J. T.; Seo, J.-W. T.; Kang, J.; Avouris, P.; Hersam, M. C.; Krupke, R.; Steiner, M.
2018. Nature Communications, 9 (1), Article number: 4095. doi:10.1038/s41467-018-06604-4Full textFull text of the publication as PDF document
Tuning Anti-Klein to Klein Tunneling in Bilayer Graphene.
Du, R.; Liu, M.-H.; Mohrmann, J.; Wu, F.; Krupke, R.; Von Löhneysen, H.; Richter, K.; Danneau, R.
2018. Physical review letters, 121 (12), 127706. doi:10.1103/PhysRevLett.121.127706
Layout influence on microwave performance of graphene field effect transistors.
Giambra, M. A.; Benfante, A.; Zeiss, L.; Pernice, R.; Miseikis, V.; Pernice, W. H. P.; Jang, M. H.; Ahn, J.-H.; Cino, A. C.; Stivala, S.; Calandra, E.; Busacca, A. C.; Danneau, R.
2018. Electronics letters, 54 (16), 984–986. doi:10.1049/el.2018.5113
Effect of Single-walled Carbon Nanotube (SWCNT) Composition on Polyfluorene-Based SWCNT Dispersion Selectivity.
Liang, S.; Li, H.; Flavel, B. S.; Adronov, A.
2018. Chemistry - a European journal, 24 (39), 9799–9806. doi:10.1002/chem.201801515
Formation of nanocrystalline graphene on germanium.
Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
Tailoring supercurrent confinement in graphene bilayer weak links.
Kraft, R.; Mohrmann, J.; Du, R.; Selvasundaram, P. B.; Irfan, M.; Kanilmaz, U. N.; Wu, F.; Beckmann, D.; von Löhneysen, H.; Krupke, R.; Akhmerov, A.; Gornyi, I.; Danneau, R.
2018. Nature Communications, 9 (1), Art. Nr. 1722. doi:10.1038/s41467-018-04153-4Full textFull text of the publication as PDF document
Employing Microwave Graphene Field Effect Transistors for Infrared Radiation Detection.
Benfante, A.; Giambra, M. A.; Pernice, R.; Stivala, S.; Calandra, E.; Parisi, A.; Cino, A. C.; Dehm, S.; Danneau, R.; Krupke, R.; Busacca, A. C.
2018. IEEE photonics journal, 10 (2), Art.Nr. 6801407. doi:10.1109/JPHOT.2018.2807923Full textFull text of the publication as PDF document
2017
Resonant Anti-Stokes Raman Scattering in Single-walled Carbon Nanotubes.
Gordeev, G.; Jorio, A.; Kusch, P.; Vieira, B. G. M.; Flavel, B.; Krupke, R.; Barros, E. B.; Reich, S.
2017. Physical review / B, 96 (24), Art.Nr. 245415. doi:10.1103/PhysRevB.96.245415
Inner- and outer-wall sorting of double-walled carbon nanotubes.
Li, H.; Gordeev, G.; Wasserroth, S.; Chakravadhanula, V. S. K.; Neelakandhan, S. K. C.; Hennrich, F.; Jorio, A.; Reich, S.; Krupke, R.; Flavel, B. S.
2017. Nature nanotechnology. doi:10.1038/nnano.2017.207
Understanding the graphitization and growth of free-standing nanocrystalline graphene using: In situ transmission electron microscopy.
Kumar, C. N. S.; Chakravadhanula, V. S. K.; Riaz, A.; Dehm, S.; Wang, D.; Mu, X.; Flavel, B.; Krupke, R.; Kübel, C.
2017. Nanoscale, 9 (35), 12835–12842. doi:10.1039/c7nr03276e
Photocurrent spectroscopy of dye-sensitized carbon nanotubes.
Alam, A.; Dehm, S.; Hennrich, F.; Zakharko, Y.; Graf, A.; Pfohl, M.; Hossain, I. M.; Kappes, M. M.; Zaumseil, J.; Krupke, R.; Flavel, B. S.
2017. Nanoscale, 9 (31), 11205–11213. doi:10.1039/c7nr04022a
Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation.
Wei, L.; Flavel, B. S.; Li, W.; Krupke, R.; Chen, Y.
2017. Nanoscale, 9 (32), 11640–11646. doi:10.1039/c7nr03302h
Fitting Single-Walled Carbon Nanotube Optical Spectra.
Pfohl, M.; Tune, D. D.; Graf, A.; Zaumseil, J.; Krupke, R.; Flavel, B. S.
2017. ACS omega, 2 (3), 1163–1171. doi:10.1021/acsomega.6b00468
Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers.
Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R.
2017. Beilstein journal of nanotechnology, 8 (1), 38–44. doi:10.3762/bjnano.8.5Full textFull text of the publication as PDF document
2016
Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.
Reis, W. G.; Weitz, R. T.; Kettner, M.; Kraus, A.; Schwab, M. G.; Tomović, Ž.; Krupke, R.; Mikhael, J.
2016. Scientific reports, 6, 26259. doi:10.1038/srep26259Full textFull text of the publication as PDF document
Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy.
Li, W.; Hennrich, F.; Flavel, B. S.; Kappes, M. M.; Krupke, R.
2016. Nanotechnology, 27 (37), Art.Nr.:375706. doi:10.1088/0957-4484/27/37/375706
Fully integrated quantum photonic circuit with an electrically driven light source.
Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol’tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
2016. Nature photonics. doi:10.1038/nphoton.2016.178
Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells.
Pfohl, M.; Glaser, K.; Graf, A.; Mertens, A.; Tune, D. D.; Puerckhauer, T.; Alam, A.; Wei, L.; Chen, Y.; Zaumseil, J.; Colsmann, A.; Krupke, R.; Flavel, B. S.
2016. Advanced energy materials. doi:10.1002/aenm.201600890
Cavity-enhanced light emission from electrically driven carbon nanotubes.
Pyatkov, F.; Fütterling, V.; Khasminskaya, S.; Flavel, B. S.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Pernice, W. H. P.
2016. Nature photonics, 10 (6), 420–428. doi:10.1038/nphoton.2016.70
Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing.
Graf, A.; Zakharko, Y. E.; Schießl, S. P.; Backes, C.; Pfohl, M.; Flavel, B. S.; Zaumseil, J.
2016. Carbon, 105, 593–599. doi:10.1016/j.carbon.2016.05.002
Dry shear aligning: A simple and versatile method to smooth and align the surfaces of carbon nanotube thin films.
Tune, D. D.; Stolz, B. W.; Pfohl, M.; Flavel, B. S.
2016. Nanoscale, 8 (6), 3232–3236. doi:10.1039/c5nr08784h
Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors.
Hennrich, F.; Li, W.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M. M.
2016. ACS Nano, 10 (2), 1888–1895. doi:10.1021/acsnano.5b05572
Directional couplers with integrated carbon nanotube incandescent light emitters.
Fechner, R. G.; Pyatkov, F.; Khasminskaya, S.; Flavel, B. S.; Krupke, R.; Pernice, W. H. P.
2016. Optics Express, 24 (2), 966–974. doi:10.1364/OE.24.000966Full textFull text of the publication as PDF document
Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling.
Pfohl, M.; Glaser, K.; Ludwig, J.; Tune, D. D.; Dehm, S.; Kayser, C.; Colsmann, A.; Krupke, R.; Flavel, B. S.
2016. Advanced Energy Materials, 6 (1), 1501345. doi:10.1002/aenm.201501345
2015
Aligned carbon nanotube thin films from liquid crystal polyelectrolyte inks.
Tune, D. D.; Blanch, A. J.; Shearer, C. J.; Moore, K. E.; Pfohl, M.; Shapter, J. G.; Flavel, B. S.
2015. ACS applied materials & interfaces, 7, 25857–25864. doi:10.1021/acsami.5b08212
Light emission, light detection and strain sensing with nanocrystalline graphene.
Riaz, A.; Pyatkov, F.; Alam, A.; Dehm, S.; Felten, A.; Chakravadhanula, V. S. K.; Flavel, B. S.; Kübel, C.; Lemmer, U.; Krupke, R.
2015. Nanotechnology, 26, 325202/1–10. doi:10.1088/0957-4484/26/32/325202
Double-walled carbon nanotube processing.
Moore, K. E.; Tune, D. D.; Flavel, B. S.
2015. Advanced materials, 27 (20), 3105–3137. doi:10.1002/adma.201405686
Persistent hysteresis in graphene-mica van der Waals heterostructures.
Mohrmann, J.; Watanabe, K.; Taniguchi, T.; Danneau, R.
2015. Nanotechnology, 26 (1), 015202/1–7. doi:10.1088/0957-4484/26/1/015202
Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method.
Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakravadhanula, V. S. K.; Kübel, C.; Krupke, R.; Flavel, B. S.
2015. ACS nano, 9 (4), 3849–3857. doi:10.1021/nn506869h
2014
Photocurrent imaging of semiconducting carbon nanotube devices with local mirrors.
Alam, A.; Flavel, B. S.; Dehm, S.; Lemmer, U.; Krupke, R.
2014. Physica Status Solidi / B, 251 (12), 2471–2474. doi:10.1002/pssb.201451272
Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts.
Thiele, C.; Vieker, H.; Beyer, A.; Flavel, B. S.; Hennrich, F.; Munoz Torres, D.; Eaton, T. R.; Mayor, M.; Kappes, M. M.; Gölzhäuser, A.; Löhneysen, H. von; Krupke, R.
2014. Applied physics letters, 104 (10), Art.Nr. 103102. doi:10.1063/1.4868097
Klein, schnell, hell. Kohlenstoff-Nanoröhren.
Engel, M.; Hennrich, F.; Krupke, R.
2014. Physik in unserer Zeit, 45, 243–248. doi:10.1002/piuz.201401364
Deposition of semiconducting single-walled carbon nanotubes using light-assisted dielectrophoresis.
Li, W.; Pyatkov, F.; Dehm, S.; Flavel, B. S.; Krupke, R.
2014. Physica status solidi / B, 251 (12), 2475–2479. doi:10.1002/pssb.201451280
Correction to separation of single-walled carbon nanotubes with a gel permeation chromatography system.
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.
2014. ACS nano, 8, 9687–9687. doi:10.1021/nn504707k
Nanotube film metallicity and its effect on the performance of carbon nanotube-silicon solar cells.
Tune, D. D.; Blanch, A. J.; Krupke, R.; Flavel, B. S.; Shapter, J. G.
2014. Physica status solidi A, 211 (7), 1479–1487. doi:10.1002/pssa.201431043
Waveguide-integrated light-emitting carbon nanotubes.
Khasminskaya, S.; Pyatkov, F.; Flavel, B. S.; Pernice, W. H.
2014. Advanced Materials, 26, 3465–3472. doi:10.1002/adma.201305634
Separation of double-walled carbon nanotubes by size exclusion column chromatography.
Moore, K. E.; Pfohl, M.; Hennrich, F.; Chakradhanula, V. S. K.; Kübel, C.; Kappes, M. M.; Shapter, J. G.; Krupke, R.; Flavel, B. S.
2014. ACS Nano, 8, 6756–6764. doi:10.1021/nn500756a
Separation of single-walled carbon nanotubes with a gel permeation chromatography system.
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.
2014. ACS nano, 8, 1817–1826. doi:10.1021/nn4062116
Photocurrent spectroscopy of (n,m) sorted solution-processed single-walled carbon nanotubes.
Engel, M.; Moore, K. E.; Alam, A.; Dehm, S.; Krupke, R.; Flavel, B. S.
2014. ACS nano, 8, 9324–9331. doi:10.1021/nn503278d
2013
Fermi energy shift in deposited metallic nanotubes: A Raman scattering study.
Hatting, B.; Heeg, S.; Ataka, K.; Heberle, J.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Reich, S.
2013. Physical Review B - Condensed Matter and Materials Physics, 87 (16), 165442/1–5. doi:10.1103/PhysRevB.87.165442
Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography.
Flavel, B. S.; Kappes, M. M.; Krupke, R.; Hennrich, F.
2013. ACS Nano, 7 (4), 3557–3564. doi:10.1021/nn4004956
Catalytic subsurface etching of nanoscale channels in graphite.
Lukas, M.; Meded, V.; Vijayaraghavan, A.; Song, L.; Ajayan, P. M.; Fink, K.; Wenzel, W.; Krupke, R.
2013. Nature Communications, 4, 1379. doi:10.1038/ncomms2399
High-quality Si₃N₄ circuits as a platform for graphene-based nanophotonic devices.
Gruhler, N.; Benz, C.; Jang, H.; Ahn, J.-H.; Danneau, R.; Pernice, W. H. P.
2013. Optics Express, 21 (25), 31678–31689. doi:10.1364/OE.21.031678Full textFull text of the publication as PDF document
Electron-beam-induced direct etching of graphene.
Thiele, C.; Felten, A.; Echtermeyer, T. J.; Ferrari, A. C.; Casiraghi, C.; Löhneysen, H. von; Krupke, R.
2013. Carbon, 64, 84–91. doi:10.1016/j.carbon.2013.07.038
Electroluminescence in single layer MoS₂.
Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M.
2013. Nano letters, 13 (4), 1416–1421. doi:10.1021/nl400516a
Controlled modification of mono- and bilayer graphene in O₂, H₂ and CF₄ plasmas.
Felten, A.; Eckmann, A.; Pireaux, J. J.; Krupke, R.; Casiraghi, C.
2013. Nanotechnology, 24, 355705/1–8. doi:10.1088/0957-4484/24/35/355705
The role of nanotubes in carbon nanotube-silicon solar cells.
Tune, D. D.; Hennrich, F.; Dehm, S.; Klein, M. F. G.; Glaser, K.; Colsmann, A.; Shapter, J. G.; Lemmer, U.; Kappes, M. M.; Krupke, R.; Flavel, B. S.
2013. Advanced Energy Materials, 3 (8), 1091–1097. doi:10.1002/aenm.201200949
Graphene on boron nitride microwave transistors driven by graphene nanoribbon back-gates.
Benz, C.; Thürmer, M.; Wu, F.; Ben Aziza, Z.; Mohrmann, J.; Löhneysen, H. von; Watanabe, K.; Taniguchi, T.; Danneau, R.
2013. Applied Physics Letters, 102, 033505/1–4. doi:10.1063/1.4788818
Single- and double-sided chemical functionalization of bilayer graphene.
Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. J.; Hirtz, M.; Krupke, R.; Casiraghi, C.
2013. Small, 9 (4), 631–639. doi:10.1002/smll.201202214
2012
Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes : Bacterial Light-Harvesting Systems.
Chappaz-Gillot, C.; Marek, P. L.; Blaive, B. J.; Canard, G.; Bürck, J.; Garab, G.; Hahn, H.; Jávorfi, T.; Kelemen, L.; Krupke, R.; Mössinger, D.; Ormos, P.; Reddy, C. M.; Roussel, C.; Steinbach, G.; Szabó, M.; Ulrich, A. S.; Vanthuyne, N.; Vijayaraghavan, A.; Zupcanova, A.; Balaban, T. S.
2012. Journal of the American Chemical Society, 134 (2), 944–954. doi:10.1021/ja203838p
Leuchtendes Graphen.
Engel, M.; Krupke, R.
2012. Physik in unserer Zeit, 43, 268–269. doi:10.1002/piuz.201290095
High-frequency performance of scaled carbon nanotube array field-effect transistors.
Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N.; Seo, J. W. T.; Green, A. A.; Hersam, M. C.; Krupke, R.; Avouris, P.
2012. Applied Physics Letters, 101, 053123/1–4. doi:10.1063/1.4742325
Probing the nature of defects in graphene by Raman spectroscopy.
Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C.
2012. Nano letters, 12 (8), 3925–3030. doi:10.1021/nl300901a
Carbon nanotube-silicon solar cells.
Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G.
2012. Advanced Energy Materials, 2, 1043–1055. doi:10.1002/aenm.201200249
Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices.
Engel, M.; Steiner, M.; Sundaram, R. S.; Krupke, R.; Green, A. A.; Hersam, M. C.; Avouris, P.
2012. ACS Nano, 6, 7303–7310. doi:10.1021/nn302416e
Light–matter interaction in a microcavity-controlled graphene transistor.
Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. von; Avouris, P.; Krupke, R.
2012. Nature Communications, 3 (3), Art. Nr.: 906. doi:10.1038/ncomms1911Full textFull text of the publication as PDF document
Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution.
Rauhut, N.; Engel, M.; Steiner, M.; Krupke, R.; Avuris, P.; Hartschuh, A.
2012. ACS Nano, 6, 6416–6421. doi:10.1021/nn301979c
2011
Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices.
Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R.
2011. Optics Express, 19 (23), A1184-A1189. doi:10.1364/OE.19.0A1184Full textFull text of the publication as PDF document
Controlled fabrication of single-walled carbon nanotube electrodes by electron-beam-induced oxidation.
Thiele, C.; Engel, M.; Hennrich, F.; Kappes, M. M.; Johnsen, K.-P.; Frase, C. G.; Löhneysen, H. von; Krupke, R.
2011. Applied physics letters, 99 (17), Art.Nr. 173105. doi:10.1063/1.3656736
Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes.
Ganzhorn, M.; Vijayaraghavan, A.; Dehm, S.; Hennrich, F.; Green, A. A.; Fichtner, M.; Voigt, A.; Rapp, M.; Löhneysen, H. von; Hersam, M. C.; Kappes, M. M.; Krupke, R.
2011. ACS Nano, 5 (3), 1670–1676. doi:10.1021/nn101992g
A scalable, CMOS-compatible assembly of ambipolar semiconducting single-walled carbon nanotube devices.
Ganzhorn, M.; Vijayaraghavan, A.; Green, A. A.; Dehm, S.; Voigt, A.; Rapp, M.; Hersam, M. C.; Krupke, R. A.
2011. Advanced Materials, 23 (15), 1734–1738. doi:10.1002/adma.201004640
Imaging conduction pathways in carbon nanotube network transistors by voltage-contrast scanning electron microscopy.
Vijayaraghavan, A.; Timmermans, M. Y.; Grigoras, K.; Nasibulin, A. G.; Kauppinen, E. I.; Krupke, R.
2011. Nanotechnology, 22, 265715/1–5. doi:10.1088/0957-4484/22/26/265715
The graphene - gold interface and its implications for nanoelectronics.
Sundaram, R. S.; Steiner, M.; Chiu, H. Y.; Engel, M.; Bol, A. A.; Krupke, R.; Burghard, M.; Kern, K.; Avouris, P.
2011. Nano Letters, 11, 3833–3837. doi:10.1021/nl201907u
Graphene microwave transistors on sapphire substrates.
Pallecchi, E.; Benz, C.; Betz, A. C.; Löhneysen, H. von; Placais, B.; Danneau, R.
2011. Applied Physics Letters, 99, 113502/1–3. doi:10.1063/1.3633105
Synthesis and optical properties of molecular rods comprising a central core-substituted naphthalenediimide chromophore for carbon nanotube junctions.
Grunder, S.; Munoz Torres, D.; Marquardt, C.; Blaszczyk, A.; Krupke, R.; Mayor, M.
2011. European journal of organic chemistry, 2011 (3), 478–496. doi:10.1002/ejoc.201001415
2010
Toward Single-Chirality Carbon Nanotube Device Arrays.
Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; Krupke, R.
2010. ACS nano, 4 (5), 2748–2753. doi:10.1021/nn100337t
Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene.
Essig, S.; Marquardt, C. W.; Vijayaraghavan, A.; Ganzhorn, M.; Dehm, S.; Hennrich, F.; Ou, F.; Green, A. A.; Scasia, C.; Bonaccorso, F.; Bohnen, K.-P.; Löhneysen, H. von; Kappes, M. M.; Ajayan, P.; Hersam, M. C.; Ferrari, A.; Krupke, R.
2010. Nano letters, 10 (5), 1589–1594. doi:10.1021/nl9039795
The polarized carbon nanotube thin film LED.
Kinoshita, M.; Steiner, M.; Engel, M.; Small, J. P.; Green, A. A.; Hersam, M. C.; Krupke, R.; Mendez, E. E.; Avouris, P.
2010. Optics Express, 18, 25738–25745. doi:10.1364/OE.18.025738
Electroluminescence from a single nanotube-molecule-nanotube junction.
Marquardt, C. W.; Grunder, S.; Blaszczyk, A.; Dehm, S.; Hennrich, F.; Löhneysen, H. von; Mayor, M.; Krupke, R.
2010. Nature Nanotechnology, 5, 863–67. doi:10.1038/nnano.2010.230
Ultraviolet photodetector arrays assembled by dielektrophoresis of ZnO nanoparticles.
Yan, W.; Mechau, N.; Hahn, H.; Krupke, R.
2010. Nanotechnology, 21, 115501/1–7. doi:10.1088/0957-4484/21/11/115501
Imaging defects and junctions in single-walled carbon nanotubes by voltage-contrast scanning electron microscopy.
Vijayaraghavan, A.; Marquardt, C. W.; Dehm, S.; Hennrich, F.; Krupke, R.
2010. Carbon, 48, 494–500. doi:10.1016/j.carbon.2009.09.067
2009
Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening.
Vijayaraghavan, A.; Sciascia, C.; Dehm, S.; Lombardo, A.; Bonetti, A.; Ferrari, A. C.; Krupke, R.
2009. ACS Nano, 3, 1729–34. doi:10.1021/nn900288d
Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites.
Fang, J.; Hahn, H.; Krupke, R.; Schramm, F.; Scherer, T.; Ding, B.; Song, X.
2009. Chemical Communications, 9, 1130–32. doi:10.1039/b819003h
2008
Separation techniques for carbon nanotubes.
Krupke, R.; Hennrich, F.
2008. Chemistry of carbon nanotubes. Ed.: V.A. Basiuk, American Scientific Publishers, Stevenson Ranch (CA)
Imaging electronic structure of carbon nanotubes by voltage-contrast scanning electron microscopy.
Vijayaraghavan, A.; Blatt, S.; Marquardt, C.; Dehm, S.; Wahi, R.; Hennrich, F.; Krupke, R.
2008. Nano Research, 1, 321–32. doi:10.1007/s12274-008-8034-3
Reversible metal-insulator transitions in metallic single-walled carbon nanotubes.
Marquardt, C. W.; Dehm, S.; Vijayaraghavan, A.; Blatt, S.; Hennrich, F.; Krupke, R.
2008. Nano Letters, 10.1021/nl801288d, 8, 2767–72. doi:10.1021%2Fnl801288d
2007
Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices.
Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R.
2007. Nano letters, 7 (6), 1556–1560. doi:10.1021/nl0703727
The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes.
Hennrich, F.; Krupke, R.; Arnold, K.; Stütz, J. A. R.; Lebedkin, S.; Koch, T.; Schimmel, T.; Kappes, M. M.
2007. The journal of physical chemistry <Washington, DC> / B, 111 (8), 1932–1937. doi:10.1021/jp065262n
Influence of structural and dielectric anisotropy on the dielectrophoresis of single-walled carbon nanotubes.
Blatt, S.; Hennrich, F.; Löhneysen, H. von; Kappes, M. M.; Vijayaraghavan, A.; Krupke, R.
2007. Nano Letters, 7, 1960–66. doi:10.1021/nl0706751
2006
Length separation studies of single walled carbon nanotube dispersions.
Arnold, K.; Hennrich, F.; Krupke, R.; Lebedkin, S.; Kappes, M. M.
2006. Physica status solidi (b), 243, 3073–76. doi:10.1002/pssb.200669196
Probing dielectrophoretic force fields with metallic carbon nanotubes.
Marquardt, C. W.; Blatt, S.; Hennrich, F.; Löhneysen, H. von; Krupke, R.
2006. Applied Physics Letters, 89, 183117/1–3. doi:10.1063/1.2372771
Thin films of metallic carbon nanotubes prepared by dielectrophoresis.
Krupke, R.; Linden, S.; Rapp, M.; Hennrich, F.
2006. Advanced Materials, 18, 1468–70. doi:10.1002/adma.200600134
2005
Sputtering of YBaCuO.
Krupke, R.; Azoulay, M.; Deutscher, G.
2005. Second-Generation HTS Conductors. Ed.: A. Goyal, 97–108, Kluwer Academic Publishers, Boston. doi:10.1007/0-387-25839-6_7
Frequency Dependence of the Dielectrophoretic Separation of Single-Walled Carbon Nanotubes.
Hennrich, F.; Krupke, R.; Kappes, M. M.; Löhneysen, H. von.
2005. Journal of nanoscience and nanotechnology, 5 (7), 1166–1171. doi:10.1166/jnn.2005.154
On the electron-phonon coupling of individual single-walled carbon nanotubes.
Oron-Carl, M.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. von; Krupke, R.
2005. Nano letters, 5 (9), 1761–1767. doi:10.1021/nl051107t
Raman spectroscopy of individual single-walled carbon nanotubes from various sources.
Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. M.
2005. The journal of physical chemistry <Washington, DC> / B, 109, 10567–10573. doi:10.1021/jp0441745
Separation techniques for carbon nanotubes.
Krupke, R.; Hennrich, F.
2005. Advanced Engineering Materials, 7, 111–16. doi:10.1002/adem.200400170
2004
Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes.
Krupke, R.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. von.
2004. Nano letters, 4 (8), 1395–1399. doi:10.1021/nl0493794
2003
Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes.
Krupke, R.; Hennrich, F.; Loehneysen, H. von; Kappes, M. M.
2003. Science, 301 (5631), 344–347. doi:10.1126/science.1086534
Contacting single bundles of carbon nanotubes with alternating electric fields.
Krupke, R.; Hennrich, F.; Weber, H. B.; Beckmann, D.; Hampe, O.; Malik, S.; Kappes, M. M.; Loehneysen, H. v.
2003. Journal of applied physics, 76 (3), 397–400. doi:10.1007/s00339-002-1592-4
FTIR-luminescence mapping of dispersed single-walled carbon nanotubes.
Lebedkin, S.; Arnold, K.; Hennrich, F.; Krupke, R.; Renker, B.; Kappes, M. M.
2003. New Journal of Physics, 5, 140. doi:10.1088/1367-2630/5/1/140
Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using Ac-dielectrophoresis.
Krupke, R.; Hennrich, F.; Weber, H. B.; Kappes, M. M.; Löhneysen, H. von.
2003. Nano Letters, 3, 1019–23. doi:10.1021/nl0342343
Near-infrared absorbance of single-walled carbon nanotubes dispersed in dimethylformamide.
Krupke, R.; Hennrich, F.; Hampe, O.; Kappes, M. M.
2003. The Journal of Physical Chemistry B, 107, 5667–69. doi:10.1021/jp034077w
2002
Patterning and Visualizing Self-Assembled Monolayers with Low-Energy Electrons.
Krupke, R.; Malik, S.; Weber, H. B.; Hampe, O.; Kappes, M. M.; Loehneysen, H. v.
2002. Nano letters, 2 (10), 1161–1164. doi:10.1021/nl025679e
1997
On the origin of hole formation in YBCO films.
Krupke, R.; Barkay, Z.; Deutscher, G.
1997. Physica / C, 289 (1-2), 146–150. doi:10.1016/S0921-4534(97)01473-1
Superconducting, structural and surface properties of GdBaCuO thin films deposited by electron cyclotron resonance supported sputtering.
Krupke, R.; Ulmer, G.; Schneider, R.; Kurzmeier, M.; Linker, G.; Geerk, J.
1997. Physica C, 279, 153–64

Theses

  • Advanced Dielectrophoresis for High-Performance Single-Walled Carbon Nanotube Electronics
    W. Li, Ph.D.-thesis (2017)
  • Waveguide-Integrated Electrically Driven Light-Emitting Carbon Nanotubes
    F. Pyatkov, Ph.D.-thesis (2017)
  • STM Characterization of Phenylene-Ethynylene Oligomers on Au(111) and their Integration into Carbon Nanotube Nanogaps
    C. Thiele, Ph.D.-thesis (2014)
  • Graphene and Carbon Nanotube Based Optoelectronic Devices
    M. Engel, Ph.D.-thesis (2012)
  • Untersuchung der elektronenstrahinduzierten Leitwertsänderung in einwandigen metallischen Kohlenstoffnanoröhren
    F. Haas, Diploma thesis (2010)
  • Wasserstoffdetektion mit einwandigen halbleitenden Kohlenstoffnanoröhren
    M. Ganzhorn, Diploma thesis (2009)
  • Elektrolumineszenz organischer Moleküle nach Kontaktierung mit Kohlenstoff-Nanoröhren
    C.W. Marquardt, Ph.D.-thesis (2009)
  • Elektrolumineszenz von metallischen Kohlenstoffnanoröhren
    S. Essig, Diploma thesis (2009)
  • Dielectrophoresis of Single-Walled Carbon Nanotubes
    S. Blatt, Ph.D.-thesis (2008)
  • Leitfähigkeit von Bündeln metallischer Kohlenstoff-Nanoröhren
    I. Klugius, Diploma thesis (2007)
  • Electron-Phonon Coupling in Single-Walled Carbon Nanotubes
    M. Oron-Carl, Ph.D.-thesis (2006)
  • Transporteigenschaften von Bündeln metallischer Kohlenstoff-Nanoröhren
    C. W. Marquardt, Diploma thesis (2006)
  • Zur kontrollierten Kontaktierung von einwandigen Kohlenstoff-Nanoröhren
    D. Secker, Diploma thesis (2003)
  • Evidence for a Complex Order Parameter on the Surface of (100)-In-plane Oriented Y1-XCaXBa2Cu3O7-Y Superconducting Thin Films From Tunneling Experiments
    R. Krupke, Ph.D.-thesis (1999)
  • Präparation von 123-Filmen durch Kathodenzerstäubung im ECR-Plasma
    R. Krupke, Diploma thesis (1994)