INT Home | Legals | Sitemap | INT-ra Net | KIT
M. Ruben
Research Unit Chair
0721/608-26871
mario rubenJsv3∂kit edu

Karlsruhe Institute of Technology
Institute of Nanotechnology & Institute of Inorganic Chemistry
Postfach 3640
D -76021 Karlsruhe
GERMANY

+49 (0)721 608 26781 (voice)
+49 (0)721 608 22630 (secretary Mrs. Lauer)

 

------------------------------

Prof. (conv.) Dr. Mario Ruben

Université de Strasbourg
IPCMS Strasbourg
23 rue du Loess
BP 43
F-67034 Strasbourg CEDEX 2
FRANCE
+33 (0)3 88 10 71 47 (voice)

 

 

 

 

 

Molecular Materials

The research activities of the Ruben-group at the Institute of Nanotechnology (INT) deal with the design of functional nano-systems by state-of-the-art organic/inorganic synthesis and supramolecular self-assembly techniques. At the INT, we are thematically organised in the interdisciplinary research topics of Functional Molecules, Molecular Electronics and Carbon-based Nanostructures.

 

Video: Spin-phonon coupling in a single-molecule resonator

Nature Nanotechnology 2013

NEWS

SMMs from CO2
SMMs from CO2

A publication in Chemical Sciences shows how Single Molecule Magnets (SMMs) exhibiting exchange coupled QTM can be synthesized by insertion of environmentally harmful CO2.

Chem. Sci., 2017, Advance Article
Quantum Einstein-de Haas Effect
Quantum Einstein-de Haas Effect

The Einstein–de Haas effect at the quantum level has been demonstrated using a single-molecule magnet attached to a carbon nanotube mechanical nanoresonator.

Press Nature Physics

Nature Commun. 2016
 
Divergent Coordination Chemistry
Divergent Coordination Chemistry

Divergent Coordination Chemistry is featured by two, in parallel synthesized tauto-isomeric Fe(II)4 L4 tetramers differing strongly in their magnetic properties. Cover

Angew. Chem. Int. Ed. 2016
Giant Magnetic Hysteresis
Giant Magnetic Hysteresis

TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer. Cover

Advanced Materials 2016
 
Tuning Topological Insulators by Molecules
Tuning Topological Insulators by Molecules

A rational design approach guided by theoretical calculations is used to customize the spin texture of surface states of a topological insulator (TI) Bi2Se3. These tailored interface properties—passivation, spin-texture tuning, and creation of hybrid interface states—lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.

Nano Lett 2015
Ir(ppy)3 as quantum transducer
Ir(ppy)3 as Quantum Transducer for Plasmon Generation

Controlling light at the nanoscale by electrical fields requires objects, in which electro-magnetic properties are responsive to gating fields. In two recent publications it was shown that molecules fulfil this requirement and act as such quantum transducers. This article was presented as research highlight in Nature Photonics.
Nano Letters 2013

Nano Letters 2014
 
Science 2014 image
Electrically driven nuclear spin resonance in single-molecule magnets A recent publication in Science shows how coherent single nuclear-spin manipulation using electric fields only can be achieved. This quantum-mechanical process is present in all nuclear spin systems and uses of the hyperfine Stark effect as a magnetic field transducer at the atomic level. Science June 2014
News_NatNanotech_Spin-Phonon-Coupling_2013
Spin-phonon coupling in a single-molecule resonator

12-2012

A single TbPc2 molecule and a carbon nanotube interact electro-mechanically as quantum objects.

Nature News and Views by Richard Winpenny.

Nat. Nanotechnol. 2013
 
News_NatNanotech_Co-dimer_2013
Switching the spin state of a coupled spin-pair

The spin state of a coupled spin-system can be switched electronically.

Nat. Nanotechnol. 2013
Nuclear Spin Read-out in Nature 2012
First Time Electronic Read-out of Nuclear Spin States For the first time nuclear spin states could be read out electronically by integrating single quantum magnets into circuits. Long nuclear spin lifetimes (tens of seconds) and exceptional relaxation characteristics at the single-atom scale open the way to a completely new device world, into which quantum logics may be implemented. Nat. Nanotech. News and Views by Herre van der Zant.
Nuclear Spin Read-out in Nature 2012
 
Spin-Split in Nat. Commun. 2012
Real-space observation of spin-split molecular orbitals in adsorbed SMMs

In collaboration with the group of R. Wiesendanger we report the first direct real-space images of spin-split molecular orbitals at a TbPc2-Co(111) spinterface.

Spin Split in Nat. Commun. 2012