INT Home | Legals | Data Protection | Sitemap | INT-ra Net | KIT


+49 (0)721 608-28902

FAX: +49 (0)721 608-28901

email: office∂int kit edu


Mailing Address

P.O. Box 3640
76021 Karlsruhe

KIT Campus North
Building 640


Events Calendar

All | Month | Week | Day |

Seminar "Imaging work and dissipation in the quantum Hall state in graphene" by Dr. Amit Aharon, Weizmann Institute, Rehovot
Nov. 20, 2019, 13:30 - 15:00
Campus North, INT, 0-167

Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations. Dissipationless topologically protected states are thus of major fundamental interest as well as of practical importance in metrology and quantum information technology. Although topological protection can be robust theoretically, in realistic devices it is often fragile against various dissipative mechanisms, which are difficult to probe directly because of their microscopic origins. In this talk I will discuss imaging results we obtained by utilizing scanning nanothermometry [1], to visualize and investigate the microscopic mechanisms undermining dissipationless transport in the quantum Hall state in graphene [2]. Our simultaneous nanoscale thermal and scanning gate microscopy shows that the dissipation is governed by crosstalk between counter-propagating pairs of downstream and upstream channels that appear at graphene boundaries because of edge reconstruction. Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work generating process that we image directly and which involves elastic tunneling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat. The independently visualized heat and entropy generation process, in contrast, occurs non-locally upon inelastic resonant scattering off single atomic defects at graphene edges, while not affecting the transport. Our findings offer a crucial insight into the mechanisms concealing the true topological protection and suggest venues for engineering more robust quantum states for device applications.



[1] D. Halbertal, J. Cuppens, M. Ben Shalom, L. Embon, N. Shadmi, Y. Anahory, H. R. Naren, J. Sarkar, A. Uri, Y. Ronen, Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim, and E. Zeldov, ''Nanoscale thermal imaging of dissipation in quantum systems'', Nature 539, 407 (2016).

[2] A. Marguerite, J. Birkbeck, A. Aharon-Steinberg, D. Halbertal, K. Bagani, I. Marcus, Y. Myasoedov, A. K. Geim, D. J. Perello, and E. Zeldov, “Imaging work and dissipation in the quantum Hall state in graphene”, Nature doi: s41586-019-1704-3 (2019); arXiv:1907.08973.

This event is part of the eventgroup INT Talks
Dr. Igor Gornyi
Institute of Nanotechnology (INT)
Karlsruhe Institute of Technology (KIT)
Mail:igor gornyiDul6∂kit edu
Interested / Everyone

Propose your own event