Publikationsliste


2024
  1. Integration of Magnetic Nanoparticles into 2D- and 3D-printed Nano-/Microstructures
    Mathew, G.; Lemma, E.; Hirtz, M.; Berganza, E.
    2024. Magnetic Nanoparticles. Ed.: A. López-Ortega, 375–398, Royal Society of Chemistry (RSC). doi:10.1039/9781837672967-00375
  2. Leveraging Entropy and Crystal Structure Engineering in Prussian Blue Analogue Cathodes for Advancing Sodium-Ion Batteries
    He, Y.; Dreyer, S. L.; Akçay, T.; Diemant, T.; Mönig, R.; Ma, Y.; Tang, Y.; Wang, H.; Lin, J.; Schweidler, S.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Ma, Y.
    2024. ACS Nano, 18 (35), 24441–24457. doi:10.1021/acsnano.4c07528
  3. Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance
    Phan-Xuan, T.; Schweidler, S.; Hirte, S.; Schüller, M.; Lin, L.; Khandelwal, A.; Wang, K.; Schützke, J.; Reischl, M.; Kübel, C.; Hahn, H.; Bello, G.; Kirchmair, J.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.; Dailey, L. A.
    2024. ACS Nano, 18 (29), 19024–19037. doi:10.1021/acsnano.4c03053
  4. Quantization-Robust On-Chip Jitter Measurement Technique for Multiple Local Oscillator Systems
    Schramm, L.; Baumgartner, P.; Aghassi-Hagmann, J.
    2024. 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapur, 19th-22nd May 2024, 1–5, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ISCAS58744.2024.10558206
  5. High-entropy and compositionally complex battery materials
    Strauss, F.; Botros, M.; Breitung, B.; Brezesinski, T.
    2024. Journal of Applied Physics, 135 (12), Art.-Nr.: 120901. doi:10.1063/5.0200031
  6. Active matrix-based pressure sensor system with a 4 × 16 printed decoder designed with a flexible hybrid organic process design kit
    Gupta, P.; Lukosiunas, J.; Marques, G. C.; Raths, S.; Stehlin, S.; Schlisske, S.; Exner, K.; Strunk, K.-P.; Melzer, C.; Erk, P.; Mittermaier, J.; Klotz, A.; Aghassi-Hagmann, J.
    2024. Flexible and Printed Electronics, 9 (1), Art.-Nr.: 015006. doi:10.1088/2058-8585/ad20fa
  7. Surface-Patterned DNA Origami Rulers Reveal Nanoscale Distance Dependency of the Epidermal Growth Factor Receptor Activation
    Mayer, I.; Karimian, T.; Gordiyenko, K.; Angelin, A.; Kumar, R.; Hirtz, M.; Mikut, R.; Reischl, M.; Stegmaier, J.; Zhou, L.; Ma, R.; Nienhaus, G. U.; Rabe, K. S.; Lanzerstorfer, P.; Domínguez, C. M.; Niemeyer, C. M.
    2024. Nano Letters, 24 (5), 1611–1619. doi:10.1021/acs.nanolett.3c04272
  8. Site‐Selective Biofunctionalization of 3D Microstructures Via Direct Ink Writing
    Mathew, G.; Lemma, E. D.; Fontana, D.; Zhong, C.; Rainer, A.; Sekula-Neuner, S.; Aghassi-Hagmann, J.; Hirtz, M.; Berganza, E.
    2024. Small. doi:10.1002/smll.202404429
  9. Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles
    Cui, Y.; Tang, Y.; Lin, J.; Wang, J.; Hahn, H.; Breitung, B.; Schweidler, S.; Brezesinski, T.; Botros, M.
    2024. Small Structures, Art.-Nr.: 2400197. doi:10.1002/sstr.202400197
  10. Stability of Immobilized Chemosensor‐Filled Vesicles on Anti‐Fouling Polymer Brush Surfaces
    Yang, W.; Xiao, J.; Yang, B.; Mathew, G.; Schäfer, A. H.; Hirtz, M.
    2024. Advanced Materials Interfaces, Article no: 2400200. doi:10.1002/admi.202400200
  11. Entropy-assisted epitaxial coating
    Schweidler, S.; Brezesinski, T.; Breitung, B.
    2024. Nature Energy, 9 (3), 240–241. doi:10.1038/s41560-024-01468-z
  12. High-entropy materials for energy and electronic applications
    Schweidler, S.; Botros, M.; Strauss, F.; Wang, Q.; Ma, Y.; Velasco, L.; Cadilha Marques, G.; Sarkar, A.; Kübel, C.; Hahn, H.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.
    2024. Nature Reviews Materials. doi:10.1038/s41578-024-00654-5
  13. High‐Resolution Printed Ethylene Vinyl Acetate Based Strain Sensor for Impact Sensing
    Nazari, P.; Zimmermann, J.; Melzer, C.; Kowalsky, W.; Aghassi-Hagmann, J.; Hernandez-Sosa, G.; Lemmer, U.
    2024. Advanced Sensor Research, Art.-Nr.: 2300189. doi:10.1002/adsr.202300189
  14. Wetting Behavior of Inkjet-Printed Electronic Inks on Patterned Substrates
    Arya, P.; Wu, Y.; Wang, F.; Wang, Z.; Cadilha Marques, G.; Levkin, P. A.; Nestler, B.; Aghassi-Hagmann, J.
    2024. Langmuir, 40 (10), 5162–5173. doi:10.1021/acs.langmuir.3c03297
  15. Patterned immobilization of polyoxometalate-loaded mesoporous silica particles via amine-ene Michael additions on alkene functionalized surfaces
    Yang, B.; Picchetti, P.; Wang, Y.; Wang, W.; Seeger, C.; Bozov, K.; Malik, S.; Mallach, D.; Schäfer, A. H.; Ibrahim, M.; Hirtz, M.; Powell, A. K.
    2024. Scientific Reports, 14 (1), Art.-Nr.: 1249. doi:10.1038/s41598-023-50846-2
  16. Accelerating Materials Discovery: Automated Identification of Prospects from X‐Ray Diffraction Data in Fast Screening Experiments
    Schuetzke, J.; Schweidler, S.; Muenke, F. R.; Orth, A.; Khandelwal, A. D.; Breitung, B.; Aghassi-Hagmann, J.; Reischl, M.
    2024. Advanced Intelligent Systems, 6 (3), Art.-Nr.: 2300501. doi:10.1002/aisy.202300501
  17. Entropy‐Mediated Stable Structural Evolution of Prussian White Cathodes for Long‐Life Na‐Ion Batteries
    He, Y.; Dreyer, S. L.; Ting, Y.-Y.; Ma, Y.; Hu, Y.; Goonetilleke, D.; Tang, Y.; Diemant, T.; Zhou, B.; Kowalski, P. M.; Fichtner, M.; Hahn, H.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.; Ma, Y.
    2024. Angewandte Chemie International Edition, 63 (7), e202315371. doi:10.1002/anie.202315371
  18. Nanoscale Confinement of Dip‐Pen Nanolithography Written Phospholipid Structures on CuZr Nanoglasses
    Vasantham, S. K.; Boltynjuk, E.; Nandam, S. H.; Berganza Eguiarte, E.; Fuchs, H.; Hahn, H.; Hirtz, M.
    2024. Advanced Materials Interfaces, 11 (2), Art.-Nr.: 2300721. doi:10.1002/admi.202300721
  19. Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Properties
    Hu, H.; Scholz, A.; Dolle, C.; Zintler, A.; Quintilla, A.; Liu, Y.; Tang, Y.; Breitung, B.; Marques, G. C.; Eggeler, Y. M. M.; Aghassi-Hagmann, J.
    2024. Advanced Functional Materials, 34 (20), Art.Nr.: 2302290. doi:10.1002/adfm.202302290
2023
  1. Printed Electronic Devices and Systems for Interfacing with Single Cells up to Organoids
    Saghafi, M. K.; Vasantham, S. K.; Hussain, N.; Mathew, G.; Colombo, F.; Schamberger, B.; Pohl, E.; Marques, G. C.; Breitung, B.; Tanaka, M.; Bastmeyer, M.; Selhuber-Unkel, C.; Schepers, U.; Hirtz, M.; Aghassi-Hagmann, J.
    2023. Advanced Functional Materials, 33 (51), Art.-Nr.: 2308613. doi:10.1002/adfm.202308613
  2. Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes (Adv. Mater. Technol. 22/2023)
    Cadilha Marques, G.; Yang, L.; Liu, Y.; Wollersen, V.; Scherer, T.; Breitung, B.; Wegener, M.; Aghassi-Hagmann, J.
    2023. Advanced Materials Technologies, 8 (22), Art.-Nr.: 2370121. doi:10.1002/admt.202370121
  3. On-Chip Quantization-and Correlation-Robust Jitter Measurement for Low Phase Noise and High Frequency Oscillators
    Schramm, L.; Baumgartner, P.; Aghassi-Hagmann, J.
    2023. IEEE Transactions on Circuits and Systems II: Express Briefs, 70 (11), 3958–3962. doi:10.1109/TCSII.2023.3282817
  4. High entropy molybdate-derived FeOOH catalyzes oxygen evolution reaction in alkaline media
    Lee, S.; Bai, L.; Jeong, J.; Stenzel, D.; Schweidler, S.; Breitung, B.
    2023. Electrochimica Acta, 463, 142775. doi:10.1016/j.electacta.2023.142775
  5. Security Enhanced Hybrid Electronic System in Foil for Temperature Sensing
    Scholz, A.; Wolfer, T.; Friedrich, M.; Albrecht, B.; Sauva, S.; Kister, T.; Lay, M.; Abdolinezhad, S.; Hadrich, W.; Alam, S.; Dost, G.; Harendt, C.; Sikora, A.; Kraus, T.; Aghassi-Hagmann, J.
    2023. 2023 IEEE International Flexible Electronics Technology Conference (IFETC), San Jose, USA, CA, USA,13-16 August 2023, 1–3, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IFETC57334.2023.10254812
  6. KadiStudio Use-Case Workflow: Automation of Data Processing for in Situ Micropillar Compression Tests
    Al-Salman, R.; Teixeira, C. A.; Zschumme, P.; Lee, S.; Griem, L.; Aghassi-Hagmann, J.; Kirchlechner, C.; Selzer, M.
    2023. Data Science Journal, 22, Art.-Nr.: 21. doi:10.5334/dsj-2023-021
  7. An Inkjet-Printed Inverter Array Realizing a Physically Unclonable Function
    Scholz, A.; Sauva, S.; Aghassi-Hagmann, J.
    2023. 2023 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Boston, MA, USA, 09-12 July 2023, 1–4, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/FLEPS57599.2023.10220404
  8. Direct Writing of Liquid Metal Microheaters for Microvalve Applications
    Hussain, N.; Scholz, A.; Spratte, T.; Selhuber-Unkel, C.; Hirtz, M.; Aghassi-Hagmann, J.
    2023. 2023 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 10220414, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/FLEPS57599.2023.10220414
  9. Influence of Transistor Compact Model Accuracy on Phase Noise Simulation
    Schramm, L.; Baumgartner, P.; Aghassi-Hagmann, J.
    2023. 2023 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Valencia, Spain, 18-21 June 2023, 329 – 332, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/PRIME58259.2023.10161796
  10. High‐Throughput Screening of High‐Entropy Fluorite‐Type Oxides as Potential Candidates for Photovoltaic Applications
    Kumbhakar, M.; Khandelwal, A.; Jha, S. K.; Kante, M. V.; Keßler, P.; Lemmer, U.; Hahn, H.; Aghassi-Hagmann, J.; Colsmann, A.; Breitung, B.; Velasco, L.; Schweidler, S.
    2023. Advanced Energy Materials, 13 (24), Art.-Nr.: 2204337. doi:10.1002/aenm.202204337
  11. A Fully Inkjet-Printed Unipolar Metal Oxide Memristor for Nonvolatile Memory in Printed Electronics
    Hu, H.; Scholz, A.; Liu, Y.; Tang, Y.; Marques, G. C.; Aghassi-Hagmann, J.
    2023. IEEE Transactions on Electron Devices, 70 (6), 3051–3056. doi:10.1109/TED.2023.3269405
  12. Evaluation of electrospun spinel-type high-entropy (Cr₀.₂Mn₀.₂Fe₀.₂Co₀.₂Ni₀.₂)₃O₄, (Cr₀.₂Mn₀.₂Fe₀.₂Co₀.₂Zn₀.₂)₃O₄ and (Cr₀.₂Mn₀.₂Fe₀.₂Ni₀.₂Zn₀.₂)₃O₄ oxide nanofibers as electrocatalysts for oxygen evolution in alkaline medium
    Triolo, C.; Schweidler, S.; Lin, L.; Pagot, G.; Di Noto, V.; Breitung, B.; Santangelo, S.
    2023. Energy Advances, 2 (5), 667–678. doi:10.1039/D3YA00062A
  13. High-entropy hexacyanoferrates as robust cathode active materials for sodium storage
    Ma, Y.; Brezesinski, T.; Breitung, B.; Ma, Y.
    2023. Matter, 6 (2), 313–315. doi:10.1016/j.matt.2023.01.008
  14. High-Entropy Composite Coating Based on AlCrFeCoNi as an Anode Material for Li-Ion Batteries
    Csík, D.; Baranová, G.; Džunda, R.; Zalka, D.; Breitung, B.; Hagarová, M.; Saksl, K.
    2023. Coatings, 13 (7), 1219. doi:10.3390/coatings13071219
  15. Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes
    Cadilha Marques, G.; Yang, L.; Liu, Y.; Wollersen, V.; Scherer, T.; Breitung, B.; Wegener, M.; Aghassi-Hagmann, J.
    2023. Advanced Materials Technologies, 8 (22), Art.-Nr.: 2300893. doi:10.1002/admt.202300893
  16. Scanning probe lithography for bioactive functionalization. habilitation thesis
    Hirtz, M.
    2023. Karlsruher Institut für Technologie (KIT)
  17. High‐Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction
    Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Kante, M. V. V.; Agrawal, D.; Hahn, H.; Aghassi-Hagmann, J.; Fichtner, M.; Breitung, B.; Schweidler, S.
    2023. Small Structures, 4 (9), Art.-Nr.: 2300012. doi:10.1002/sstr.202300012
  18. Piezoresistive Free‐standing Microfiber Strain Sensor for High‐resolution Battery Thickness Monitoring
    Nazari, P.; Bäuerle, R.; Bäuerle, R.; Zimmermann, J.; Melzer, C.; Schwab, C.; Smith, A.; Kowalsky, W.; Aghassi-Hagmann, J.; Hernandez-Sosa, G.; Lemmer, U.
    2023. Advanced Materials, 35 (21), Art.-Nr.: 2212189. doi:10.1002/adma.202212189
  19. Synergy of cations in high entropy oxide lithium ion battery anode
    Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B.; Kübel, C.; Mu, X.
    2023. Nature Communications, 14, Art.-Nr.: 1487. doi:10.1038/s41467-023-37034-6
  20. Laser printed microelectronics
    Yang, L.; Hu, H.; Scholz, A.; Feist, F.; Cadilha Marques, G.; Kraus, S.; Bojanowski, N. M.; Blasco, E.; Barner-Kowollik, C.; Aghassi-Hagmann, J.; Wegener, M.
    2023. Nature Communications, 14 (1), Art.-Nr.: 1103. doi:10.1038/s41467-023-36722-7
  21. A supramolecular cucurbit[8]uril-based rotaxane chemosensor for the optical tryptophan detection in human serum and urine
    Krämer, J.; Grimm, L. M.; Zhong, C.; Hirtz, M.; Biedermann, F.
    2023. Nature Communications, 14 (1), Art.-Nr.: 518. doi:10.1038/s41467-023-36057-3
  22. Fluorescence Imaging Study of Film Coating Structure and Composition Effects on DNA Hybridization
    Yang, B.; Gordiyenko, K.; Schäfer, A.; Dadfar, S. M. M.; Yang, W.; Riehemann, K.; Kumar, R.; Niemeyer, C. M.; Hirtz, M.
    2023. Advanced NanoBiomed Research, Art.-Nr.: 2200133. doi:10.1002/anbr.202200133
  23. 3D Nanolithography by Means of Lipid Ink Spreading Inhibition
    Berganza, E.; Boltynjuk, E.; Mathew, G.; Vallejo, F. F.; Gröger, R.; Scherer, T.; Sekula-Neuner, S.; Hirtz, M.
    2023. Small, Art.-Nr.: 2205590. doi:10.1002/smll.202205590
2022
  1. Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
    Schweidler, S.; Tang, Y.; Lin, L.; Karkera, G.; Alsawaf, A.; Bernadet, L.; Breitung, B.; Hahn, H.; Fichtner, M.; Tarancón, A.; Botros, M.
    2022. Frontiers in Energy Research, 10, Art.-Nr.: 983979. doi:10.3389/fenrg.2022.983979
  2. Protein spot arrays on graphene oxide coatings for efficient single-cell capture
    Kumar, R.; Llewellyn, S.; Vasantham, S. K.; Nie, K.; Sekula-Neuner, S.; Vijayaraghavan, A.; Hirtz, M.
    2022. Scientific Reports, 12 (1), Art.-Nr.: 3895. doi:10.1038/s41598-022-06225-4
  3. Diamond Surfaces with Clickable Antifouling Polymer Coating for Microarray‐Based Biosensing
    Kumar, R.; Yang, B.; Barton, J.; Stejfova, M.; Schäfer, A.; König, M.; Knittel, P.; Cigler, P.; Hirtz, M.
    2022. Advanced Materials Interfaces, 9 (33), Art.Nr. 2201453. doi:10.1002/admi.202201453
  4. Correlated Study of Material Interaction Between Capillary Printed Eutectic Gallium Alloys and Gold Electrodes
    Hussain, N.; Scherer, T.; Das, C.; Heuer, J.; Debastiani, R.; Gumbsch, P.; Aghassi-Hagmann, J.; Hirtz, M.
    2022. Small, 18 (42), Article no: 2202987. doi:10.1002/smll.202202987
  5. Printed Electrodermal Activity Sensor with Optimized Filter for Stress Detection
    Zhao, H.; Scholz, A.; Beigl, M.; Ni, S.; Singaraju, S. A.; Aghassi-Hagmann, J.
    2022. International Symposium on Wearable Computers (ISWC’22) , Atlanta, GA and Cambridge, UK, September 11-15, 2022, 112–114, Association for Computing Machinery (ACM). doi:10.1145/3544794.3558479
  6. P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, J.; Dreyer, S. L.; Wang, K.; Ding, Z.; Diemant, T.; Karkera, G.; Ma, Y.; Sarkar, A.; Zhou, B.; Gorbunov, M. V.; Omar, A.; Mikhailova, D.; Presser, V.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Wang, Q.
    2022. Materials Futures, 1 (3), Art.Nr. 035104. doi:10.1088/2752-5724/ac8ab9
  7. High entropy fluorides as conversion cathodes with tailorable electrochemical performance
    Cui, Y.; Sukkurji, P. A.; Wang, K.; Azmi, R.; Nunn, A. M.; Hahn, H.; Breitung, B.; Ting, Y.-Y.; Kowalski, P. M.; Kaghazchi, P.; Wang, Q.; Schweidler, S.; Botros, M.
    2022. Journal of Energy Chemistry, 72, 342–351. doi:10.1016/j.jechem.2022.05.032
  8. Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures
    Berganza, E.; Apte, G.; Vasantham, S. K.; Nguyen, T.-H.; Hirtz, M.
    2022. Polymers, 14 (7), Article no: 1327. doi:10.3390/polym14071327
  9. In-situ Tuning of Printed Neural Networks for Variation Tolerance
    Hefenbrock, M.; Weller, D. D.; Aghassi-Hagmann, J.; Beigl, M.; Tahoori, M. B.
    2022. Proceedings of the 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE 2022). Ed.: C. Bolchini, 72–75, Institute of Electrical and Electronics Engineers (IEEE). doi:10.23919/DATE54114.2022.9774591
  10. High-Entropy Sulfides as Electrode Materials for Li-Ion Batteries
    Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; Breitung, B.
    2022. Advanced Energy Materials, 12 (8), Art.-Nr. 2103090. doi:10.1002/aenm.202103090
  11. Counterfeit Detection and Prevention in Additive Manufacturing Based on Unique Identification of Optical Fingerprints of Printed Structures
    Erozan, A. T.; Hefenbrock, M.; Gnad, D. R. E.; Beigl, M.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2022. IEEE Access, 10, 105910–105919. doi:10.1109/ACCESS.2022.3209241
  12. High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst
    Stenzel, D.; Zhou, B.; Okafor, C.; Kante, M. V.; Lin, L.; Melinte, G.; Bergfeldt, T.; Botros, M.; Hahn, H.; Breitung, B.; Schweidler, S.
    2022. Frontiers in Energy Research, 10, Art.-Nr.: 942314. doi:10.3389/fenrg.2022.942314
  13. Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing
    Singaraju, S. A.; Weller, D. D.; Gspann, T. S.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2022. Sensors, 22 (11), Art.-Nr. 4000. doi:10.3390/s22114000
  14. Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries
    Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W.; Fichtner, M.; Ma, Y.; Breitung, B.; Brezesinski, T.
    2022. Advanced Functional Materials, 32 (34), Art.Nr. 2202372. doi:10.1002/adfm.202202372
  15. Activated Porous Carbon Supported Pd and ZnO Nanocatalysts for Trace Sensing of Carbaryl Pesticide in Water and Food Products
    Jemai, R.; Djebbi, M. A.; Hussain, N.; Yang, B.; Hirtz, M.; Trouillet, V.; Ben Rhaiem, H.; Ben Haj Amara, A.
    2022. New Journal of Chemistry, 46 (29), 13880–13895. doi:10.1039/D2NJ01844F
  16. FluidFM-Based Fabrication of Nanopatterns: Promising Surfaces for Platelet Storage Application
    Apte, G.; Hirtz, M.; Nguyen, T.-H.
    2022. ACS Applied Materials & Interfaces, 14 (21), 24133–24143. doi:10.1021/acsami.2c03459
  17. Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation
    Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
    2022. Coatings, 12 (3), 402. doi:10.3390/coatings12030402
  18. Multiplexed Covalent Patterns on Double‐Reactive Porous Coating
    Das, S.; Kumar, R.; Yang, B.; Bag, S.; Sauter, E.; Hussain, N.; Hirtz, M.; Manna, U.
    2022. Chemistry – An Asian Journal, 17 (11), Art.Nr. e202200157. doi:10.1002/asia.202200157
  19. Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido‐Functionalized Antifouling Polymer Brushes via Microspotting
    Yang, B.; Wang, Y.; Vorobii, M.; Sauter, E.; Koenig, M.; Kumar, R.; Rodriguez-Emmenegger, C.; Hirtz, M.
    2022. Advanced Materials Interfaces, 9 (16), Art.-Nr.: 2102325. doi:10.1002/admi.202102325
  20. An Automated Room Temperature Flip-Chip Mounting Process for Hybrid Printed Electronics
    Chen, Z.; Gengenbach, U.; Liu, X.; Scholz, A.; Zimmermann, L.; Aghassi-Hagmann, J.; Koker, L.
    2022. Micromachines, 13 (4), 583. doi:10.3390/mi13040583
  21. Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    Wang, L.; Torkamanzadeh, M.; Majed, A.; Zhang, Y.; Wang, Q.; Breitung, B.; Feng, G.; Naguib, M.; Presser, V.
    2022. Advanced sustainable systems, 6 (3), Artk.Nr:: 2100383. doi:10.1002/adsu.202100383
2021
  1. Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode
    Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
    2021. Scientific reports, 11 (1), Article no: 23381. doi:10.1038/s41598-021-02685-2
  2. High‐Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next‐Generation Synthesis and Applications
    Wang, Q.; Velasco, L.; Breitung, B.; Presser, V.
    2021. Advanced energy materials, 11 (47), Art. Nr.: 2102355. doi:10.1002/aenm.202102355
  3. Matching Network Efficiency: The New Old Challenge for Millimeter-Wave Silicon Power Amplifiers
    Lauritano, M.; Baumgartner, P.; Ulusoy, A.-C.; Aghassi-Hagmann, J.
    2021. IEEE Microwave Magazine, 22 (12), 86–96. doi:10.1109/MMM.2021.3109682
  4. High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage
    Ma, Y.; Ma, Y.; Dreyer, S. L.; Wang, Q.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B.; Brezesinski, T.
    2021. Advanced Materials, 33 (34), Art. Nr.: 2101342. doi:10.1002/adma.202101342
  5. A multiplexed phospholipid membrane platform for curvature sensitive protein screening
    Berganza, E.; Ebrahimkutty, M. P.; Vasantham, S. K.; Zhong, C.; Wunsch, A.; Navarrete, A.; Galic, M.; Hirtz, M.
    2021. Nanoscale, 13 (29), 12642–12650. doi:10.1039/D1NR01133B
  6. Low-frequency Noise Characteristics of Inkjet-Printed Electrolyte-gated Thin-Film Transistors
    Feng, X.; Singaraju, S. A.; Hu, H.; Marques, G. C.; Fu, T.; Baumgartner, P.; Secker, D.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2021. IEEE Electron Device Letters, 42 (6), 843–846. doi:10.1109/LED.2021.3072000
  7. Channel Geometry Scaling Effect in Printed Inorganic Electrolyte-Gated Transistors
    Rasheed, F.; Rommel, M.; Marques, G. C.; Wenzel, W.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2021. IEEE transactions on electron devices, 68 (4), 1866–1871. doi:10.1109/TED.2021.3058929
  8. A Hybrid Optoelectronic Sensor Platform with an Integrated Solution‐Processed Organic Photodiode
    Scholz, A.; Gerig, D.; Zimmermann, L.; Seiberlich, M.; Strobel, N.; Hernandez-Sosa, G.; Aghassi-Hagmann, J.
    2021. Advanced materials technologies, 6 (2), Art.Nr. 2000172. doi:10.1002/admt.202000172
  9. High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates
    Stenzel, D.; Issac, I.; Wang, K.; Azmi, R.; Singh, R.; Jeong, J.; Najib, S.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.; Schweidler, S.; Breitung, B.
    2021. Inorganic chemistry, 60 (1), 115–123. doi:10.1021/acs.inorgchem.0c02501
  10. Printed Low-Voltage Crossbar-PUF for Identification
    Scholz, A.; Zimmermann, L.; Sikora, A.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2021. 2021 IEEE International Flexible Electronics Technology Conference (IFETC): 8-11 August 2021, Columbus, OH, USA, 62–66, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IFETC49530.2021.9580520
  11. High-precision tabletop microplotter for flexible on-demand material deposition in printed electronics and device functionalization
    Hussain, N.; Jan Nazami, M.; Ma, C.; Hirtz, M.
    2021. Review of Scientific Instruments, 92 (12), Art.Nr. 125104. doi:10.1063/5.0061331
  12. Direct-Write Patterning of Biomimetic Lipid Membranes In Situ with FluidFM
    Berganza, E.; Hirtz, M.
    2021. ACS applied materials & interfaces, 13 (43), 50774–50784. doi:10.1021/acsami.1c15166
  13. Inkjet-printed bipolar resistive switching device based on Ag/ZnO/Au structure
    Hu, H.; Scholz, A.; Singaraju, S. A.; Tang, Y.; Marques, G. C.; Aghassi-Hagmann, J.
    2021. Applied physics letters, 119 (11), 112103–1. doi:10.1063/5.0058526
  14. Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays
    Liu, H.-Y.; Kumar, R.; Zhong, C.; Gorji, S.; Paniushkina, L.; Masood, R.; Wittel, U. A.; Fuchs, H.; Nazarenko, I.; Hirtz, M.
    2021. Advanced materials, 33 (35), Art.-Nr.: 2008493. doi:10.1002/adma.202008493
  15. High‐Resolution Capillary Printing of Eutectic Gallium Alloys for Printed Electronics
    Hussain, N.; Fu, T.; Marques, G.; Das, C.; Scherer, T.; Bog, U.; Berner, L.; Wacker, I.; Schröder, R. R.; Aghassi-Hagmann, J.; Hirtz, M.
    2021. Advanced materials technologies, 6 (11), Art.-Nr.: 2100650. doi:10.1002/admt.202100650
  16. High-entropy energy materials: Challenges and new opportunities
    Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B.
    2021. Energy and Environmental Science, 14 (5), 2883–2905. doi:10.1039/d1ee00505g
  17. Facile Approach to Conductive Polymer Microelectrodes for Flexible Electronics
    Wang, Z.; Cui, H.; Li, S.; Feng, X.; Aghassi-Hagmann, J.; Azizian, S.; Levkin, P. A.
    2021. ACS Applied Materials and Interfaces, 13 (18), 21661–21668. doi:10.1021/acsami.0c22519
  18. Realization and training of an inverter-based printed neuromorphic computing system
    Weller, D. D.; Hefenbrock, M.; Beigl, M.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2021. Scientific Reports, 11 (1), 9554. doi:10.1038/s41598-021-88396-0
  19. Improved Electrical, Thermal, and Thermoelectric Properties Through Sample‐to‐Sample Fluctuations in Near‐Percolation Threshold Composite Materials
    Rösch, A. G.; Giunta, F.; Mallick, M. M.; Franke, L.; Gall, A.; Aghassi-Hagmann, J.; Schmalian, J.; Lemmer, U.
    2021. Advanced theory and simulations, 4 (6), Art.-Nr.: 2000284. doi:10.1002/adts.202000284
  20. Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis
    Sukkurji, P. A.; Cui, Y.; Lee, S.; Wang, K.; Azmi, R.; Sarkar, A.; Indris, S.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Wang, Q.; Botros, M.; Breitung, B.
    2021. Journal of Materials Chemistry A, 9 (14), 8998–9009. doi:10.1039/d0ta10209a
  21. Protein Microarray Immobilization via Epoxide Ring‐Opening by Thiol, Amine, and Azide
    Dadfar, S. M. M.; Sekula-Neuner, S.; Trouillet, V.; Hirtz, M.
    2021. Advanced materials interfaces, 8 (10), Art.-Nr.: 2002117. doi:10.1002/admi.202002117
  22. Cucurbit[n]uril-Immobilized Sensor Arrays for Indicator-Displacement Assays of Small Bioactive Metabolites
    Zhong, C.; Hu, C.; Kumar, R.; Trouillet, V.; Biedermann, F.; Hirtz, M.
    2021. ACS applied nano materials, 4 (5), 4676–4687. doi:10.1021/acsanm.1c00293
  23. Controlled Surface Adhesion of Macrophages via Patterned Antifouling Polymer Brushes
    Striebel, J.; Vorobii, M.; Kumar, R.; Liu, H.-Y.; Yang, B.; Weishaupt, C.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M.; Riehemann, K.
    2021. Advanced NanoBiomed Research, 1 (1), Art.Nr. 2000029. doi:10.1002/anbr.202000029
2020
  1. Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
    Scholz, A.; Zimmermann, L.; Gengenbach, U.; Koker, L.; Chen, Z.; Hahn, H.; Sikora, A.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2020. Nature Communications, 11 (1), Art.-Nr. 5543. doi:10.1038/s41467-020-19324-5
  2. A Printed Camouflaged Cell against Reverse Engineering of Printed Electronics Circuits
    Erozan, A. T.; Weller, D. D.; Feng, Y.; Marques, G. C.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2020. IEEE transactions on very large scale integration (VLSI) systems, 28 (11), 2448–2458. doi:10.1109/TVLSI.2020.3022776
  3. Printed Machine Learning Classifiers
    Mubarik, M. H.; Weller, D. D.; Bleier, N.; Tomei, M.; Aghassi-Hagmann, J.; Tahoori, M. B.; Kumar, R.
    2020. 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Athens, Greece, Greece, 17-21 Oct. 2020, 73–87, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/MICRO50266.2020.00019
  4. Bayesian Optimized Mixture Importance Sampling for High-Sigma Failure Rate Estimation
    Weller, D. D.; Hefenbrock, M.; Golanbari, M. S.; Beigl, M.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2020. IEEE transactions on computer-aided design of integrated circuits and systems, 39 (10), 2772–2783. doi:10.1109/tcad.2019.2961321
  5. Thioacetate‐Based Initiators for the Synthesis of Thiol‐End‐Functionalized Poly(2‐oxazoline)s
    Gil Alvaradejo, G.; Glassner, M.; Kumar, R.; Trouillet, V.; Welle, A.; Wang, Y.; Rosa, V. R.; Sekula-Neuner, S.; Hirtz, M.; Hoogenboom, R.; Delaittre, G.
    2020. Macromolecular rapid communications, 41 (18), Art.Nr. 2000320. doi:10.1002/marc.202000320
  6. Hardware-Intrinsic Security with Printed Electronics for Identification of IoE Devices
    Zimmermann, L.; Scholz, A.; Tahoori, M. B.; Sikora, A.; Aghassi-Hagmann, J.
    2020. 24th IEEE European Conference on Circuit Theory and Design, ECCTD 2020; Library and Information Center (LIC) of the Technical UniversitySofia, Bulgaria, 7 - 10 September 2020, Art.Nr. 9218277, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ECCTD49232.2020.9218277
  7. ALD-Derived, Low-Density Alumina as Solid Electrolyte in Printed Low-Voltage FETs
    Neuper, F.; Marques, G. C.; Singaraju, S. A.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
    2020. IEEE transactions on electron devices, 67 (9), 3828–3833. doi:10.1109/TED.2020.3005624
  8. Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
    Singaraju, S. A.; Marques, G. C.; Gruber, P.; Kruk, R.; Hahn, H.; Breitung, B.; Aghassi-Hagmann, J.
    2020. Physica status solidi / Rapid research letters, 14 (9), Art.Nr. 2000252. doi:10.1002/pssr.202000252
  9. Printed Logic Gates Based on Enhancement- and Depletion-Mode Electrolyte-Gated Transistors
    Marques, G. C.; Birla, A.; Arnal, A.; Dehm, S.; Ramon, E.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2020. IEEE transactions on electron devices, 67 (8), 3146–3151. doi:10.1109/TED.2020.3002208
  10. Tailored Silicon/Carbon Compounds for Printed Li–Ion Anodes
    Sukkurji, P. A.; Issac, I.; Singaraju, S. A.; Velasco, L.; Hagmann, J. A.; Bessler, W.; Hahn, H.; Botros, M.; Breitung, B.
    2020. Batteries & supercaps, 3 (8), 713–720. doi:10.1002/batt.202000052
  11. Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors
    Jeong, J.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
    2020. ChemElectroChem, 7 (13), 2735–2739. doi:10.1002/celc.202000305
  12. Scanner‐Based Capillary Stamping
    Hou, P.; Kumar, R.; Oberleiter, B.; Kohns, R.; Enke, D.; Beginn, U.; Fuchs, H.; Hirtz, M.; Steinhart, M.
    2020. Advanced functional materials, 30 (25), Art. Nr.: 2001531. doi:10.1002/adfm.202001531
  13. Enhanced Stability of Lipid Structures by Dip-Pen Nanolithography on Block-Type MPC Copolymer
    Liu, H.-Y.; Kumar, R.; Takai, M.; Hirtz, M.
    2020. Molecules, 25 (12), Article no: 2768. doi:10.3390/molecules25122768
  14. Morphological stability of rod-shaped continuous phases
    Wang, F.; Tschukin, O.; Leisner, T.; Zhang, H.; Nestler, B.; Selzer, M.; Cadilha Marques, G.; Aghassi-Hagmann, J.
    2020. Acta materialia, 192, 20–29. doi:10.1016/j.actamat.2020.04.028
  15. Printed Microprocessors
    Bleier, N.; Mubarik, M. H.; Rasheed, F.; Aghassi-Hagmann, J.; Tahoori, M. B.; Kumar, R.
    2020. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 30 May-3 June 2020, 213–226, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ISCA45697.2020.00028
  16. Circuit Design and Compact Modeling in Printed Electronics Based on Inorganic Materials. PhD dissertation
    Cadilha Marques, G.
    2020, April 30. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000118801
  17. High-Performance Ag–Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators
    Mallick, M. M.; Rösch, A. G.; Franke, L.; Ahmed, S.; Gall, A.; Geßwein, H.; Aghassi, J.; Lemmer, U.
    2020. ACS applied materials & interfaces, 12 (17), 19655–19663. doi:10.1021/acsami.0c01676
  18. How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?
    Maji, K.; Das, A.; Hirtz, M.; Manna, U.
    2020. ACS applied materials & interfaces, 12 (12), 14531–14541. doi:10.1021/acsami.9b22469
  19. Synergies between Surface Microstructuring and Molecular Nanopatterning for Controlling Cell Populations on Polymeric Biointerfaces
    Díaz Lantada, A.; Kumar, R.; Guttmann, M.; Wissmann, M.; Schneider, M.; Worgull, M.; Hengsbach, S.; Rupp, F.; Bade, K.; Hirtz, M.; Sekula-Neuner, S.
    2020. Polymers, 12 (3), Article No.655. doi:10.3390/polym12030655
  20. Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform
    Liu, H.-Y.; Koch, C.; Haller, A.; Joosse, S. A.; Kumar, R.; Vellekoop, M. J.; Horst, L. J.; Keller, L.; Babayan, A.; Failla, A. V.; Jensen, J.; Peine, S.; Keplinger, F.; Fuchs, H.; Pantel, K.; Hirtz, M.
    2020. Advanced biosystems, 4 (2), 1900162. doi:10.1002/adbi.201900162
  21. Spinel to Rock-Salt Transformation in High Entropy Oxides with Li Incorporation
    Wang, J.; Stenzel, D.; Azmi, R.; Najib, S.; Wang, K.; Jeong, J.; Sarkar, A.; Wang, Q.; Sukkurji, P. A.; Bergfeldt, T.; Botros, M.; Maibach, J.; Hahn, H.; Brezesinski, T.; Breitung, B.
    2020. Electrochem, 1 (1), 60–74. doi:10.3390/electrochem1010007
  22. An Inkjet-Printed Full-Wave Rectifier for Low-Voltage Operation Using Electrolyte-Gated Indium-Oxide Thin-Film Transistors
    Feng, X.; Scholz, A.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2020. IEEE transactions on electron devices, 67 (11), 4918–4923. doi:10.1109/TED.2020.3020288
  23. Lithium containing layered high entropy oxide structures
    Wang, J.; Cui, Y.; Wang, Q.; Wang, K.; Huang, X.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Schweidler, S.; Brezesinski, T.; Breitung, B.
    2020. Scientific reports, 10, Art.-Nr.: 18430. doi:10.1038/s41598-020-75134-1
  24. Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides
    Lin, L.; Wang, K.; Azmi, R.; Wang, J.; Sarkar, A.; Botros, M.; Najib, S.; Cui, Y.; Stenzel, D.; Anitha Sukkurji, P.; Wang, Q.; Hahn, H.; Schweidler, S.; Breitung, B.
    2020. Journal of materials science, 55, 16879–16889. doi:10.1007/s10853-020-05183-4
  25. Site-Specific Controlled Growth of Coiled Lambda-Shaped Carbon Nanofibers for Potential Application in Catalyst Support and Nanoelectronics
    Lutz, C.; Bog, U.; Thelen, R.; Syurik, J.; Malik, S.; Greiner, C.; Hölscher, H.; Hirtz, M.
    2020. ACS applied nano materials, 3 (8), 7899–7907. doi:10.1021/acsanm.0c01374
  26. Fabrication, Characterization and Simulation of Sputtered Pt/In-Ga-Zn-O Schottky Diodes for Low-Frequency Half-Wave Rectifier Circuits
    Ulianova, V.; Rasheed, F.; Bolat, S.; Sevilla, G. T.; Didenko, Y.; Feng, X.; Shorubalko, I.; Bachmann, D.; Tatarchuk, D.; Tahoori, M. B.; Aghassi-Hagmann, J.; Romanyuk, Y. E.
    2020. IEEE access, 8, 111783–111790. doi:10.1109/ACCESS.2020.3002267
  27. High entropy oxides: The role of entropy, enthalpy and synergy
    Sarkar, A.; Breitung, B.; Hahn, H.
    2020. Scripta materialia, 187, 43–48. doi:10.1016/j.scriptamat.2020.05.019
  28. A Novel Printed-Lookup-Table-Based Programmable Printed Digital Circuit
    Erozan, A. T.; Weller, D. D.; Rasheed, F.; Bishnoi, R.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2020. IEEE transactions on very large scale integration (VLSI) systems, 28 (6), 1496–1504. doi:10.1109/TVLSI.2020.2980931
  29. A Compact Low-Voltage True Random Number Generator Based on Inkjet Printing Technology
    Erozan, A. T.; Wang, G. Y.; Bishnoi, R.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2020. IEEE transactions on very large scale integration (VLSI) systems, 28 (6), 1485–1495. doi:10.1109/TVLSI.2020.2975876
  30. Programmable Neuromorphic Circuit based on Printed Electrolyte-Gated Transistors
    Weller, D. D.; Hefenbrock, M.; Tahoori, M. B.; Aghassi-Hagmann, J.; Beigl, M.
    2020. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 446–451, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ASP-DAC47756.2020.9045211
  31. Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry
    Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
    2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
  32. Reverse Engineering of Printed Electronics Circuits: From Imaging to Netlist Extraction
    Erozan, A. T.; Hefenbrock, M.; Beigl, M.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2020. IEEE transactions on information forensics and security / Institute of Electrical and Electronics Engineers, 15, 475–486. doi:10.1109/TIFS.2019.2922237
  33. Crossover-aware placement and routing for inkjet printed circuits
    Rasheed, F.; Hefenbrock, M.; Bishnoi, R.; Beigl, M.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2020. ACM journal on emerging technologies in computing systems, 16 (2), Article No.19. doi:10.1145/3375461
  34. Embedded Analog Physical Unclonable Function System to Extract Reliable and Unique Security Keys
    Scholz, A.; Zimmermann, L.; Sikora, A.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2020. Applied Sciences, 10 (3), Article No.759. doi:10.3390/app10030759
  35. Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities
    Das, S.; Kumar, R.; Parbat, D.; Sekula-Neuner, S.; Hirtz, M.; Manna, U.
    2020. ACS applied materials & interfaces, 12 (2), 2935–2943. doi:10.1021/acsami.9b17470
  36. Fabrication and Modeling of pn-Diodes Based on Inkjet Printed Oxide Semiconductors
    Cadilha Marques, G.; Sukuramsyah, A. M.; Arnal Rus, A.; Bolat, S.; Aribia, A.; Feng, X.; Singaraju, S. A.; Ramon, E.; Romanyuk, Y.; Tahoori, M.; Aghassi-Hagmann, J.
    2020. IEEE electron device letters, 41 (1), 187–190. doi:10.1109/led.2019.2956346
2019
  1. Nonquasi-Static Capacitance Modeling and Characterization for Printed Inorganic Electrolyte-Gated Transistors in Logic Gates
    Feng, X.; Marques, G. C.; Rasheed, F.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2019. IEEE transactions on electron devices, 66 (12), 5272–5277. doi:10.1109/TED.2019.2947787
  2. Ink‐Jet Printable, Self‐Assembled, and Chemically Crosslinked Ion‐Gel as Electrolyte for Thin Film, Printable Transistors
    Jeong, J.; Marques, G. C.; Feng, X.; Boll, D.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
    2019. Advanced materials interfaces, 6 (21), 1901074. doi:10.1002/admi.201901074
  3. Aptamer Conformation-Cooperated Enzyme-Assisted Surface-Enhanced Raman Scattering Enabling Ultrasensitive Detection of Cell Surface Protein Biomarkers in Blood Samples
    Li, Y.; Fang, Q.; Miao, X.; Zhang, X.; Zhao, Y.; Yan, J.; Zhang, Y.; Wu, R.; Nie, B.; Hirtz, M.; Liu, J.
    2019. ACS sensors, 4 (10), 2605–2614. doi:10.1021/acssensors.9b00604
  4. Development of Fully Printed Electrolyte-Gated Oxide Transistors Using Graphene Passive Structures
    Singaraju, S. A.; Baby, T. T.; Neuper, F.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
    2019. ACS applied electronic materials, 1 (8), 1538–1544. doi:10.1021/acsaelm.9b00313
  5. Impact of Intrinsic Capacitances on the Dynamic Performance of Printed Electrolyte-Gated Inorganic Field Effect Transistors
    Feng, X.; Punckt, C.; Marques, G. C.; Hefenbrock, M.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2019. IEEE transactions on electron devices, 66 (8), 3365–3370. doi:10.1109/TED.2019.2919933
  6. Progress Report on “From Printed Electrolyte‐Gated Metal‐Oxide Devices to Circuits”
    Cadilha Marques, G.; Weller, D.; Erozan, A. T.; Feng, X.; Tahoori, M.; Aghassi-Hagmann, J.
    2019. Advanced materials, 31 (26), Article no: 1806483. doi:10.1002/adma.201806483
  7. On the homogeneity of high entropy oxides: An investigation at the atomic scale
    Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
    2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039
  8. Carbon Nanofibers: Locally Controlled Growth of Individual Lambda-Shaped Carbon Nanofibers
    Lutz, C.; Bog, U.; Loritz, T.; Syurik, J.; Malik, S.; Kumar, C. N. S.; Kübel, C.; Bruns, M.; Greiner, C.; Hirtz, M.; Hölscher, H.
    2019. Small, 15 (7), 1970036. doi:10.1002/smll.201970036
  9. Tailoring Threshold Voltages of Printed Electrolyte-Gated Field-Effect Transistors by Chromium Doping of Indium Oxide Channels
    Neuper, F.; Chandresh, A.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
    2019. ACS omega, 4 (24), 20579–20585. doi:10.1021/acsomega.9b02513
  10. Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP)
    Dadfar, S. M. M.; Sekula-Neuner, S.; Trouillet, V.; Liu, H.-Y.; Kumar, R.; Powell, A. K.; Hirtz, M.
    2019. Beilstein journal of nanotechnology, 10, 2505–2515. doi:10.3762/bjnano.10.241
  11. Thin Films of Thermally Stable Ordered Mesoporous Rh₂O₃(I) for Visible-Light Photocatalysis and Humidity Sensing
    Dubraja, L. A.; Boll, D.; Reitz, C.; Wang, D.; Belić, D.; Mazilkin, A.; Breitung, B.; Hahn, H.; Elm, M. T.; Brezesinski, T.
    2019. ACS applied nano materials, 2 (11), 7126–7133. doi:10.1021/acsanm.9b01654
  12. Reversible control of magnetism: On the conversion of hydrated FeF3 with Li to Fe and LiF
    Singh, R.; Witte, R.; Mu, X.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B.
    2019. Journal of materials chemistry / A, 7 (41), 24005–24011. doi:10.1039/c9ta08928d
  13. Facilitating an International Research Experience Focused on Applied Nanotechnology and Surface Chemistry for American Undergraduate Students Collaborating with Mentors at a German Educational and Research Institution
    Wilson, C.; Hirtz, M.; Levkin, P. A.; Sutlief, A. L.; Holmes, A. E.
    2019. Journal of chemical education, 96 (11), 2441–2449. doi:10.1021/acs.jchemed.9b00146
  14. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries
    Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T.; Hahn, H.; Breitung, B.
    2019. Energy & environmental science, 12 (8), 2433–2442. doi:10.1039/c9ee00368a
  15. Design and Evaluation of a Printed Analog-Based Differential Physical Unclonable Function
    Zimmermann, L.; Scholz, A.; Tahoori, M. B.; Aghassi-Hagmann, J.; Sikora, A.
    2019. IEEE transactions on very large scale integration (VLSI) systems, 27 (11), 2498–2510. doi:10.1109/TVLSI.2019.2924081
  16. Predictive Modeling and Design Automation of Inorganic Printed Electronics
    Rasheed, F.; Hefenbrock, M.; Bishnoi, R.; Beigl, M.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2019. Proceedings of the 2019 Design, Automation & Test in Europe (DATE), 25-29 March 2019, Florence, Italy, 30–35, Institute of Electrical and Electronics Engineers (IEEE). doi:10.23919/DATE.2019.8715159
  17. Influence of Humidity on the Performance of Composite Polymer Electrolyte-Gated Field-Effect Transistors and Circuits
    Marques, G. C.; Von Seggern, F.; Dehm, S.; Breitung, B.; Hahn, H.; Dasgupta, S.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2019. IEEE transactions on electron devices, 66 (5), 2202–2207. doi:10.1109/TED.2019.2903456
  18. Development of Dip-Pen Nanolithography (DPN) and Its Derivatives
    Liu, G.; Hirtz, M.; Fuchs, H.; Zheng, Z.
    2019. Small, 15 (21), Article: 1900564. doi:10.1002/smll.201900564
  19. Writing Behavior of Phospholipids in Polymer Pen Lithography (PPL) for Bioactive Micropatterns
    Angelin, A.; Bog, U.; Kumar, R.; Niemeyer, C. M.; Hirtz, M.
    2019. Polymers, 11 (5), Article: 891. doi:10.3390/polym11050891
  20. High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties
    Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
    2019. Advanced materials, 1806236. doi:10.1002/adma.201806236
  21. High entropy oxides as anode material for Li-ion battery applications: A practical approach
    Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
    2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
  22. Locally Controlled Growth of Individual Lambda-Shaped Carbon Nanofibers
    Lutz, C.; Bog, U.; Loritz, T.; Syurik, J.; Malik, S.; Kumar, C. N. S.; Kübel, C.; Bruns, M.; Greiner, C.; Hirtz, M.; Hölscher, H.
    2019. Small, Article no 1803944. doi:10.1002/smll.201803944
  23. Variability Modeling for Printed Inorganic Electrolyte-Gated Transistors and Circuits
    Rasheed, F.; Hefenbrock, M.; Beigl, M.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2019. IEEE transactions on electron devices, 66 (1), 146–152. doi:10.1109/TED.2018.2867461
2018
  1. A Comparative Study of Thiol-Terminated Surface Modification by Click Reactions: Thiol-yne Coupling versus Thiol-ene Michael Addition
    Dadfar, S. M. M.; Sekula-Neuner, S.; Trouillet, V.; Hirtz, M.
    2018. Advanced materials interfaces, 5 (24), Article No.1801343. doi:10.1002/admi.201801343
  2. High entropy oxides for reversible energy storage
    Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; Biasi, L. de; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B.
    2018. Nature Communications, 9 (1), Article number: 3400. doi:10.1038/s41467-018-05774-5
  3. Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries
    Breitung, B.; Schneider, A.; Chakravadhanula, V. S. K.; Suchomski, C.; Janek, J.; Sommer, H.; Brezesinski, T.
    2018. Batteries & Supercaps, 1 (1), 27–32. doi:10.1002/batt.201700004
  4. An Inkjet-Printed Low-Voltage Latch Based on Inorganic Electrolyte-Gated Transistors
    Weller, D.; Cadilha Marques, G.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2018. IEEE electron device letters, 39 (6), 831–834. doi:10.1109/LED.2018.2826361
  5. High performance printed oxide field-effect transistors processed using photonic curing
    Garlapati, S. K.; Marques, G. C.; Gebauer, J. S.; Dehm, S.; Bruns, M.; Winterer, M.; Tahoori, M. B.; Aghassi-Hagmann, J.; Hahn, H.; Dasgupta, S.
    2018. Nanotechnology, 29 (23), Art.Nr. 235205. doi:10.1088/1361-6528/aab7a2
  6. Site-Specific Surface Functionalization via Microchannel Cantilever Spotting (µCS): Comparison between Azide-Alkyne and Thiol-Alkyne Click Chemistry Reactions
    Dadfar, S. M. M.; Sekula-Neuner, S.; Bog, U.; Trouillet, V.; Hirtz, M.
    2018. Small, 14 (21), 1800131. doi:10.1002/smll.201800131
  7. A hybrid system architecture for the readout of a printed physical unclonable function
    Zimmermann, L.; Scholz, A.; Sikora, A.; Aghassi-Hagmann, J.
    2018. 2018 International Conference on Electronics Technology (ICET), Chengdu, China, May 23-27, 2018, 11–14, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ELTECH.2018.8401395
  8. Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface
    Bhattacharyya, M.; Gruenwald, W.; Jansen, D.; Reindl, L.; Aghassi-Hagmann, J.
    2018. Journal of Low Power Electronics and Applications, 8 (1), 3. doi:10.3390/jlpea8010003
  9. A Smooth EKV-Based DC Model for Accurate Simulation of Printed Transistors and Their Process Variations
    Rasheed, F.; Golanbari, M. S.; Cadilha Marques, G.; Tahoori, M. B.; Aghassi-Hagmann, J.
    2018. IEEE transactions on electron devices, 65 (2), 667–673. doi:10.1109/TED.2017.2786160
  10. Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: Investigation into volume expansion, gas evolution, and particle fracture
    Schiele, A.; Breitung, B.; Mazilkin, A.; Schweidler, S.; Janek, J.; Gumbel, S.; Fleischmann, S.; Burakowska-Meise, E.; Sommer, H.; Brezesinski, T.
    2018. ACS omega, 3 (12), 16706–16713. doi:10.1021/acsomega.8b02541
  11. Facile synthesis of C–FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage
    Reddy, M. A.; Breitung, B.; Kiran Chakravadhanula, V. S.; Helen, M.; Witte, R.; Rongeat, C.; Kübel, C.; Hahn, H.; Fichtner, M.
    2018. RSC Advances, 8 (64), 36802–36811. doi:10.1039/C8RA07378C
  12. Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices
    Garlapati, S. K.; Divya, M.; Breitung, B.; Kruk, R.; Hahn, H.; Dasgupta, S.
    2018. Advanced materials, 30 (40), Art. Nr.: 1707600. doi:10.1002/adma.201707600
  13. Inkjet-Printed EGFET-Based Physical Unclonable Function-Design, Evaluation, and Fabrication
    Erozan, A. T.; Marques, G. C.; Golanbari, M. S.; Bishnoi, R.; Dehm, S.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2018. IEEE transactions on very large scale integration (VLSI) systems, 26 (12), 2935–2946. doi:10.1109/TVLSI.2018.2866188
  14. Combinatorial Synthesis of Macromolecular Arrays by Microchannel Cantilever Spotting (µCS)
    Atwater, J.; Mattes, D. S.; Streit, B.; Bojničić-Kninski, C. von; Loeffler, F. F.; Breitling, F.; Fuchs, H.; Hirtz, M.
    2018. Advanced materials, 30 (31), 1801632/1–6. doi:10.1002/adma.201801632
  15. Formation of nanocrystalline graphene on germanium
    Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
    2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
  16. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
    Bhattacharyya, M.; Gruenwald, W.; Jansen, D.; Reindl, L.; Aghassi-Hagmann, J.
    2018. Sensors, 18 (5), 1452. doi:10.3390/s18051452
  17. Design and Evaluation of Physical Unclonable Function for Inorganic Printed Electronics
    Erozan, A. T.; Golanbari, M. S.; Bishnoi, R.; Aghassi-Hagmann, J.; Tahoori, M.
    2018. Proceedings of the 19th Symposium on Quality Electronic Design, ISQED 2018, Santa Clara, California, USA, 13th - 14th March 2018
  18. From silicon to printed electronics: A coherent modeling and design flow approach based on printed electrolyte gated FETs
    Marques, G. C.; Rasheed, F.; Aghassi-Hagmann, J.; Tahoori, M. B.
    2018. Proceedings of the 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, KOR, January 22-25, 2018, 658–663, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ASPDAC.2018.8297397
2017
  1. Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries
    Breitung, B.; Aguiló-Aguayo, N.; Bechtold, T.; Hahn, H.; Janek, J.; Brezesinski, T.
    2017. Scientific reports, 7, 13010. doi:10.1038/s41598-017-13261-y
  2. "Molecular-Activity Painting" : schaltbare, lichtgesteuerte Manipulation in lebenden Zellen
    Chen, X.; Venkatachalapathy, M.; Kamps, D.; Weigel, S.; Kumar, R.; Orlich, M.; Garrecht, R.; Hirtz, M.; Niemeyer, C. M.; Wu, Y.-W.; Dehmelt, L.
    2017. Angewandte Chemie, 129 (21), 6010–6014. doi:10.1002/ange.201611432
  3. Nanoenabled Products: Categories, Manufacture, and Applications
    Wohlleben, W.; Punckt, C.; Aghassi-Hagmann, J.; Siebers, F.; Menzel, F.; Esken, D.; Drexel, C.-P.; Zoz, H.; Benz, H. U.; Weier, A.; Hitzler, M.; Schäfer, A. I.; De Cola, L.; Prasetyanto, E. A.
    2017. Metrology, Standardization and Industrial Innovations of Nanomaterials Applications of Nanotechnology Protocols and Industrial Innovations. Ed.: E. Mansfield, Chapter 25, Wiley-VCH Verlag
  4. Digital power and performance analysis of inkjet printed ring oscillators based on electrolyte-gated oxide electronics
    Cadilha Marques, G.; Garlapati, S. K.; Dehm, S.; Dasgupta, S.; Hahn, H.; Tahoori, M.; Aghassi-Hagmann, J.
    2017. Applied physics letters, 111 (10), 102103. doi:10.1063/1.4991919
  5. Polymer Pen Lithography with Lipids for Large-Area Gradient Patterns
    Kumar, R.; Urtizberea, A.; Ghosh, S.; Bog, U.; Rainer, Q.; Lenhert, S.; Fuchs, H.; Hirtz, M.
    2017. Langmuir, 33 (35), 8739–8748. doi:10.1021/acs.langmuir.7b01368
  6. Clickable Antifouling Polymer Brushes for Polymer Pen Lithography
    Bog, U.; Pereira, A. de los S.; Mueller, S. L.; Havenridge, S.; Parrillo, V.; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M.
    2017. ACS applied materials & interfaces, 9 (13), 12109–12117. doi:10.1021/acsami.7b01184
  7. “Molecular Activity Painting” : Switch-like, Light-Controlled Perturbations inside Living Cells
    Chen, X.; Venkatachalapathy, M.; Kamps, D.; Weigel, S.; Kumar, R.; Orlich, M.; Garrecht, R.; Hirtz, M.; Niemeyer, C. M.; Wu, Y.-W.; Dehmelt, L.
    2017. Angewandte Chemie / International edition, 56 (21), 5916–5920. doi:10.1002/anie.201611432
  8. Phospholipid arrays on porous polymer coatings generated by micro-contact spotting
    Sekula-Neuner, S.; Freitas, M. de; Tröster, L.-M.; Jochum, T.; Levkin, P. A.; Hirtz, M.; Fuchs, H.
    2017. Beilstein journal of nanotechnology, 8, 715–722. doi:10.3762/bjnano.8.75
  9. Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study
    Willems, N.; Urtizberea, A.; Verre, A. F.; Iliut, M.; Lelimousin, M.; Hirtz, M.; Vijayaraghavan, A.; Sansom, M. S. P.
    2017. ACS nano, 11 (2), 1613–1625. doi:10.1021/acsnano.6b07352
  10. [Ag₁₁₅S₃₄(SCH₂C₆H₄Bu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster
    Bestgen, S.; Fuhr, O.; Breitung, B.; Chakravadhanula, V. S. K.; Guthausen, G.; Hennrich, F.; Yu, W.; Kappes, M. M.; Roesky, P. W.; Fenske, D.
    2017. Chemical science, 8 (3), 2235–2240. doi:10.1039/c6sc04578b
  11. Electrolyte-Gated FETs Based on Oxide Semiconductors : Fabrication and Modeling
    Marques, G. C.; Garlapati, S. K.; Chatterjee, D.; Dehm, S.; Dasgupta, S.; Aghassi, J.; Tahoori, M. B.
    2017. IEEE transactions on electron devices, 64 (1), 279–285. doi:10.1109/TED.2016.2621777
2016
  1. Polymer pen lithography for biosensing and biomedical applications
    Hirtz, M.; Kumar, R.; Bog, U.; Sekula-Neuner, S.; Liu, H. Y.; Pantel, K.; Cato, A. C. B.; Fuchs, H.
    2016. NANOCON 2016 - Conference Proceedings, 8th International Conference on Nanomaterials - Research and Application; Hotel Voronez IBrno; Czech Republic; 19 October 2016 through 21 October 2016, 408–413, TANGER Ltd
  2. Ink transport modelling in Dip-Pen Nanolithography and Polymer Pen Lithography
    Urtizberea, A.; Hirtz, M.; Fuchs, H.
    2016. Nanofabrication, 2 (1), 43–53. doi:10.1515/nanofab-2015-0005
  3. Attoliter Chemistry for Nanoscale Functionalization of Graphene
    Hirtz, M.; Varey, S.; Fuchs, H.; Vijayaraghavan, A.
    2016. ACS applied materials & interfaces, 8 (49), 33371–33376. doi:10.1021/acsami.6b06065
  4. Branch Suppression and Orientation Control of Langmuir–Blodgett Patterning on Prestructured Surfaces
    Zhu, J.; Wilczek, M.; Hirtz, M.; Hao, J.; Wang, W.; Fuchs, H.; Gurevich, S. V.; Chi, L.
    2016. Advanced materials interfaces, 3 (19), Art. Nr.: 1600478. doi:10.1002/admi.201600478
  5. Multi-color polymer pen lithography for oligonucleotide arrays
    Kumar, R.; Weigel, S.; Meyer, R.; Niemeyer, C. M.; Fuchs, H.; Hirtz, M.
    2016. Chemical communications, 52 (83), 12310–12313. doi:10.1039/C6CC07087F
  6. Self-limiting multiplexed assembly of lipid membranes on large-area graphene sensor arrays
    Hirtz, M.; Oikonomou, A.; Clark, N.; Kim, Y.-J.; Fuchs, H.; Vijayaraghavan, A.
    2016. Nanoscale, 8 (33), 15147–15151. doi:10.1039/c6nr04615k
  7. Microwave synthesis of high-quality and uniform 4 nm ZnFe₂O₄ nanocrystals for application in energy storage and nanomagnetics
    Suchomski, C.; Breitung, B.; Witte, R.; Knapp, M.; Bauer, S.; Baumbach, T.; Reitz, C.; Brezesinski, T.
    2016. Beilstein journal of nanotechnology, 7, 1350–1360. doi:10.3762/bjnano.7.126
  8. Click-Chemistry Based Allergen Arrays Generated by Polymer Pen Lithography for Mast Cell Activation Studies
    Kumar, R.; Bonicelli, A.; Sekula-Neuner, S.; Cato, A. C. B.; Hirtz, M.; Fuchs, H.
    2016. Small, 12 (38), 5330–5338. doi:10.1002/smll.201601623
  9. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries
    Breitung, B.; Baumann, P.; Sommer, H.; Janek, J.; Brezesinski, T.
    2016. Nanoscale, 8 (29), 14048–14056. doi:10.1039/c6nr03575b
  10. Catalyst-free site-specific surface modifications of nanocrystalline diamond films: Via microchannel cantilever spotting
    Davydova, M.; De Los Santos Pereira, A.; Bruns, M.; Kromka, A.; Ukraintsev, E.; Hirtz, M.; Rodriguez-Emmenegger, C.
    2016. RSC Advances, 6 (63), 57820–57827. doi:10.1039/c6ra12194b
  11. Mechano- and Photochromism from Bulk to Nanoscale: Data Storage on Individual Self-Assembled Ribbons
    Genovese, D.; Aliprandi, A.; Prasetyanto, E. A.; Mauro, M.; Hirtz, M.; Fuchs, H.; Fujita, Y.; Uji-I, H.; Lebedkin, S.; Kappes, M.; De Cola, L.
    2016. Advanced functional materials, 26 (29), 5271–5278. doi:10.1002/adfm.201601269
  12. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries
    Reitz, C.; Breitung, B.; Schneider, A.; Wang, D.; Lehr, M. von der; Leichtweiss, T.; Janek, J.; Hahn, H.; Brezesinski, T.
    2016. ACS applied materials & interfaces, 8 (16), 10274–10282. doi:10.1021/acsami.5b12361
  13. Click-Chemistry Immobilized 3D-Infused Microarrays in Nanoporous Polymer Substrates
    Hirtz, M.; Feng, W.; Fuchs, H.; Levkin, P. A.
    2016. Advanced materials interfaces, 3 (6), 1500469. doi:10.1002/admi.201500469
  14. Facile Synthesis of Carbon-Metal Fluoride Nanocomposites for Lithium-Ion Batteries
    Reddy, M. A.; Breitung, B.; Wall, C.; Trivedi, S.; Chakravadhanula, V. S. K.; Helen, M.; Fichtner, M.
    2016. Energy technology, 4 (1), 201–211. doi:10.1002/ente.201500358
2015
  1. Innovation in Wissenschaft und Wirtschaft
    Aghassi-Hagmann, J.
    2015. Nanotechnologie aktuell, 8
  2. Multiscale origami structures as interface for cells
    Angelin, A.; Weigel, S.; Garrecht, R.; Meyer, R.; Bauer, J.; Kumar, R. K.; Hirtz, M.; Niemeyer, C. M.
    2015. Angewandte Chemie / International edition, 54, 15813–15817. doi:10.1002/anie.201509772
  3. Selective binding of DNA origami on biomimetic lipid patches
    Hirtz, M.; Brglez, J.; Fuchs, H.; Niemeyer, C. M.
    2015. Small, 11, 5752–5758. doi:10.1002/smll.201501333
  4. A versatile microarray platform for capturing rare cells
    Brinkmann, F.; Hirtz, M.; Haller, A.; Gorges, T. M.; Vellekoop, M. J.; Riethdorf, S.; Müller, V.; Pantel, K.; Fuchs, H.
    2015. Scientific reports, 5, 15342. doi:10.1038/srep15342
  5. Densely packed microgoblet laser pairs for cross-referenced biomolecular detection
    Bog, U.; Brinkmann, F.; Wondimu, S. F.; Wienhold, T.; Kraemmer, S.; Koos, C.; Kalt, H.; Hirtz, M.; Fuchs, H.; Koeber, S.; Mappes, T.
    2015. Advanced science, 2, 15500066/1–6. doi:10.1002/advs.201500066
  6. A diffusive ink transport model for lipid dip-pen nanolithography
    Urtizberea, A.; Hirtz, M.
    2015. Nanoscale, 7, 15618–15634. doi:10.1039/C5NR04352B
  7. Functional lipid assemblies by dip-pen nanolithography and polymer pen lithography
    Hirtz, M.; Sekula-Neuner, S.; Urtizberea, A.; Fuchs, H.
    2015. Chen, X. [Hrsg.] Fuchs, H. [Hrsg.] Soft Matter Nanotechnology: From Structure to Function Weinheim : Wiley-VCH, 2015, 161–186
  8. Patterning of quantum dots by dip-pen and polymer pen nanolithography
    Biswas, S.; Brinkmann, F.; Hirtz, M.; Fuchs, H.
    2015. Nanofabrication, 2, 19–26. doi:10.1515/nanofab-2015-0002
  9. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization
    Li, J.; Li, L.; Du, X.; Feng, W.; Welle, A.; Trapp, O.; Grunze, M.; Hirtz, M.; Levkin, P. A.
    2015. Nano letters, 15, 675–681. doi:10.1021/nl5041836
  10. Apertureless cantilever-free pen arrays for scanning photochemical printing
    Zhou, Y.; Xie, Z.; Brown, K. A.; Park, D. J.; Zhou, X.; Chen, P. C.; Hirtz, M.; Lin, Q. Y.; Dravid, V. P.; Schatz, G. C.; Zheng, Z.; Mirkin, C. A.
    2015. Small, 11, 913–918. doi:10.1002/smll.201402195
  11. Dip-pen nanolithography-assisted protein crystallization
    Ielasi, F. S.; Hirtz, M.; Sekula-Neuner, S.; Laue, T.; Fuchs, H.; Willaert, R. G.
    2015. Journal of the American Chemical Society, 137, 154–157. doi:10.1021/ja512141k
  12. Ultra-large scale AFM of lipid droplet arrays: Investigating the ink transfer volume in dip pen nanolithography
    Förste, A.; Pfirrmann, M.; Sachs, J.; Gröger, R.; Walheim, S.; Brinkmann, F.; Hirtz, M.; Fuchs, H.; Schimmel, T.
    2015. Nanotechnology, 26, 175303/1–7. doi:10.1088/0957-4484/26/17/175303
  13. Diamond nanophotonic circuits functionalized by dip-pen nanolithography
    Rath, P.; Hirtz, M.; Lewes-Malandrakis, G.; Brink, D.; Nebel, C.; Pernice, W. H. P.
    2015. Advanced optical materials, 3 (3), 328–335. doi:10.1002/adom.201400434
2014
  1. A RFID/NFC based Programmable SOC for biomedical applications
    Bhattacharyya, M.; Gruenwald, W.; Dusch, B.; Aghassi-Hagmann, J.; Jansen, D.; Reindl, L.
    2014. 2014 International SoC Design Conference (ISOCC), Jeju, 3–6 November 2014, 78–79, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ISOCC.2014.7087580
  2. Large-Scale Parallel Surface Functionalization of Goblet-type Whispering Gallery Mode Microcavity Arrays for Biosensing Applications
    Bog, U.; Brinkmann, F.; Kalt, H.; Koos, C.; Mappes, T.; Hirtz, M.; Fuchs, H.; Köber, S.
    2014. Small, 10 (19), 3863–3868. doi:10.1002/smll.201400813
  3. Mesopattern of immobilised bone morphogenetic protein-2 created by microcontact printing and dip-pen nanolithography influence C2C12 cell fate
    Oberhansl, S.; Castano, A. G.; Lagunas, A.; Prats-Alfonso, E.; Hirtz, M.; Albericio, F.; Fuchs, H.; Samitier, J.; Martinez, E.
    2014. RSC Advances, 4 (100), 56809–56805. doi:10.1039/C4RA10311D
  4. Click-chemistry based multi-component microarrays by quill-like pens
    Hirtz, M.; Greiner, A. M.; Landmann, T.; Bastmeyer, M.; Fuchs, H.
    2014. Advanced materials interfaces, 1 (3), 1300129/1–7. doi:10.1002/admi.201300129
  5. Vapor-based multicomponent coatings for antifouling and biofunctional synergic modifications
    Tsai, M. Y.; Chen, Y. C.; Lin, T. J.; Hsu, Y. C.; Lin, C. Y.; Yuan, R. H.; Yu, J.; Teng, M. S.; Hirtz, M.; Chen, M. H. C.; Chang, C. H.; Chen, H. Y.
    2014. Advanced functional materials, 24, 2281–2287. doi:10.1002/adfm.201303050
  6. High-performance and tailorable pressure sensor based on ultrthin conductive polymer film
    Shao, Q.; Niu, Z.; Hirtz, M.; Jiang, L.; Liu, Y.; Wang, Z.; Chen, X.
    2014. Small, 10, 1466–1472. doi:10.1002/smll.201303601
  7. Selective binding of oligonucleotide on TiO₂ surfaces modified by swift heavy ion beam lithography
    Perez-Giron, J. V.; Hirtz, M.; McAtamney, C.; Bell, A. P.; Mas, J. A.; Jaafar, M.; Luis, O. de; Fuchs, H.; Jensen, J.; Sanz, R.
    2014. Nature photonics, 339 (3), 67–74. doi:10.1016/j.nimb.2014.02.134
  8. Tunable organic hetero-patterns via molecule diffusion control
    Wang, H.; Wang, W.; Li, L.; Hirtz, M.; Wang, C. G.; Wang, Y.; Xie, Z.; Fuchs, H.; Chi, L.
    2014. Small, 10 (15), 3045–3049. doi:10.1002/smll.201303400
  9. Simulation modeling of supported lipid membranes - A review
    Hirtz, M.; Kumar, N.; Chi, L.
    2014. Current topics in medicinal chemistry, 14 (5), 617–623. doi:10.2174/1568026614666140118204332
  10. HIV-1 antibodies and vaccine antigen selectivity interact with lipid domains
    Hardy, G. J.; Wong, G. C.; Nayak, R.; Anasti, K.; Hirtz, M.; Shapter, J. G.; Alam, S. M.; Zauscher, S.
    2014. Biochimica et Biophysica Acta - Biomembranes, 1838, 2662–2669. doi:10.1016/j.bbamem.2014.07.007
  11. Localization and Dynamics of Glucocorticoid Receptor at the Plasma Membrane of Activated Mast Cells
    Oppong, E.; Hedde, P. N.; Sekula-Neuner, S.; Yang, L.; Brinkmann, F.; Dörlich, R. M.; Hirtz, M.; Fuchs, H.; Nienhaus, G. U.; Cato, A. C. B.
    2014. Small, 10 (10), 1991–1998. doi:10.1002/smll.201303677
  12. Advances in DNA-directed immobilization
    Meyer, R.; Giselbrecht, S.; Rapp, B. E.; Hirtz, M.; Niemeyer, C. M.
    2014. Current opinion in chemical biology, 18 (1), 8–15. doi:10.1016/j.cbpa.2013.10.023
2013
  1. Temperature dependent compact modeling of gate tunneling leakage current in double gate MOSFETs
    Darbandy, G.; Aghassi, J.; Sedlmeir, J.; Monga, U.; Garduño, I.; Cerdeira, A.; Iñiguez, B.
    2013. Solid state electronics, 81, 124–129. doi:10.1016/j.sse.2012.11.009
  2. Interdigitated multicolored bioink micropatterns by multiplexed polymer pen lithography
    Brinkmann, F.; Hirtz, M.; Greiner, A. M.; Weschenfelder, M.; Waterkotte, B.; Bastmeyer, M.; Fuchs, H.
    2013. Small, 9 (19), 3266–3275. doi:10.1002/smll.201203183
  3. On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink
    Bog, U.; Laue, T.; Grossmann, T.; Beck, T.; Wienhold, T.; Richter, B.; Hirtz, M.; Fuchs, H.; Kalt, H.; Mappes, T.
    2013. Lab on a chip, 13 (14), 2701–2707. doi:10.1039/c3lc50149c
  4. Fe basierte Konversionsmaterialien für Li-Ionen Sekundärbatterien. PhD dissertation
    Breitung, B.
    2013. Dissertation, Karlsruher Institut für Technologie 2013
  5. TEM investigations on FeF₂ based nanocomposite battery materials
    Chakravadhanula, V. S. K.; Kübel, C.; Reddy, M. A.; Breitung, B.; Powell, A. K.; Fichtner, M.; Hahn, H.
    2013. Microscopy and microanalysis, 19 (Suppl. S2), 1524–1525. doi:10.1017/S1431927613009616
  6. Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storage
    Breitung, B.; Reddy, M. A.; Chakravadhanula, V. S. K.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M.
    2013. Beilstein journal of nanotechnology, 4, 705–713. doi:10.3762/bjnano.4.80
  7. Improving the energy density and power density of CFₓ by mechanical milling: A primary lithium battery electrode
    Reddy, M. A.; Breitung, B.; Fichtner, M.
    2013. ACS Applied Materials and Interfaces, 5, 11207–11211. doi:10.1021/am403438m
  8. Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography
    Hirtz, M.; Oikonomou, A.; Georgiou, T.; Fuchs, H.; Vijayaraghavan, A.
    2013. Nature Communications, 4, 2591. doi:10.1038/ncomms3591
  9. Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens
    Hirtz, M.; Lyon, M.; Feng, W.; Holmes, A. E.; Fuchs, H.; Levkin, P. A.
    2013. Beilstein journal of nanotechnology, 4, 377–384. doi:10.3762/bjnano.4.44
  10. Single- and double-sided chemical functionalization of bilayer graphene
    Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. J.; Hirtz, M.; Krupke, R.; Casiraghi, C.
    2013. Small, 9 (4), 631–639. doi:10.1002/smll.201202214
  11. CFx derived carbon-FeF₂ nanocomposites for reversible lithium storage
    Reddy, M. A.; Breitung, B.; Chakravadhanula, V. S. K.; Wall, C.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M.
    2013. Advanced energy materials, 3, 308–313. doi:10.1002/aenm.201200788
2012
  1. Temperature dependence of compact analytical modeling of gate tunneling current in Double Gate MOSFETs
    Darbandy, G.; Aghassi, J.; Sedlmeir, J.; Monga, U.; Garduno, I.; Cerdeira, A.; Iniguez, B.
    2012. 13th International Conference on Ultimate Integration on Silicon (ULIS), Grenoble, France, 6–7 March 2012, 73–76, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ULIS.2012.6193360
  2. Assessment of NBTI in Presence of Self-Heating in High-k SOI FinFETs
    Monga, U.; Khandelwal, S.; Aghassi, J.; Sedlmeir, J.; Fjeldly, T. A.
    2012. IEEE electron device letters, 33 (11), 1532–1534. doi:10.1109/LED.2012.2213572
  3. Generalization of the Concept of Equivalent Thickness and Capacitance to Multigate MOSFETs Modeling
    Chevillon, N.; Sallese, J.-M.; Lallement, C.; Prégaldiny F.; Madec, M.; Sedlmeir, J.; Aghassi, J.
    2012. IEEE transactions on electron devices, 59 (1), 60–71. doi:10.1109/TED.2011.2171347
  4. Facile modification of silica substrates provides a platform for direct-writing surface click chemistry
    Oberhansl, S.; Hirtz, M.; Lagunas, A.; Eritja, R.; Martinez, E.; Fuchs, H.; Samitier, J.
    2012. Small, 8, 541–545. doi:10.1002/smll.201101875
  5. New approaches for bottom-up assembly of tobacco mosaic virus-derived nucleoprotein tubes on defined patterns on silica- and polymer-based substrates
    Azucena, C.; Eber, F. J.; Trouillet, V.; Hirtz, M.; Heissler, S.; Franzreb, M.; Fuchs, H.; Wege, C.; Gliemann, H.
    2012. Langmuir, 28, 14867–14877. doi:10.1021/la302774h
  6. Allergen arrays for antibody screening and immune cell activation profiling generated by parallel lipid dip-pen nanolithography
    Sekula-Neuner, S.; Maier, J.; Oppong, E.; Cato, A. C. B.; Hirtz, M.; Fuchs, H.
    2012. Small, 8, 585–591. doi:10.1002/smll.201101694
  7. Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures
    Jochum, T.; Ritz, M. E.; Schuster, C.; Funderburk, S. F.; Jehle, K.; Schmitz, K.; Brinkmann, F.; Hirtz, M.; Moss, D.; Cato, A. C. B.
    2012. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1822, 1070–1078. doi:10.1016/j.bbadis.2012.02.006
2011
  1. On the thermal failure in nanoscale devices: Insight towards heat transport including critical BEOL and design guidelines for robust thermal management & EOS/ESD reliability
    Shrivastava, M.; Agrawal, M.; Aghassi, J.; Gossner, H.; Molzer, W.; Schulz, T.; Ramgopal Rao, V.
    2011. IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 10–14 April 2011, 3F.3.1–3F.3.5, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IRPS.2011.5784498
  2. Impact of Self-Heating in SOI FinFETs on Analog Circuits and Interdie Variability
    Monga, U.; Aghassi, J.; Siprak, D.; Sedlmeir, J.; Hanke, C.; Kubrak, V.; Heinrich, R.; Fjeldly, T. A.
    2011. IEEE electron device letters, 32 (3), 249–251. doi:10.1109/LED.2010.2097235
  3. Site specific protein immobilization into structured polymer brushes prepared by AFM lithography
    Wagner, H.; Li, Y.; Hirtz, M.; Chi, L.; Fuchs, H.; Studer, A.
    2011. Soft Matter, 7, 9854–9858. doi:10.1039/c1sm06013a
  4. Comparative height measurements of dip-pen nanolithography-produced lipid membrane stacks with atomic force, fluorescence, and surface-enhanced ellipsometric contrast microscopy
    Hirtz, M.; Corso, R.; Sekula-Neuner, S.; Fuchs, H.
    2011. Langmuir, 27, 11605–11608. doi:10.1021/la202703j
  5. Functionalized silver chalcogenide clusters
    Langer, R.; Breitung, B.; Wünsche, L.; Fenske, D.; Fuhr, O.
    2011. Zeitschrift für Anorganische und Allgemeine Chemie, 637, 995–1005. doi:10.1002/zaac.201100018
  6. Measurement of mass transfer during dip-pen nanolithography with phospholipids
    Biswas, S.; Hirtz, M.; Fuchs, H.
    2011. Small, 7, 2081–2086. doi:10.1002/smll.201100381
2010
  1. Compact modeling framework for multigate SOI MOSFETs based on conformal mapping techniques
    Monga, U.; Nilsen, D.-M.; Aghassi, J.; Sedlmeir, J.; Fjeldly, T. A.
    2010. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 1–4 November 2010. Ed. T. Tang, 1805–1807, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICSICT.2010.5667672
  2. Substrate-independent dip-pen nanolithography based on reactive coatings
    Chen, H. Y.; Hirtz, M.; Deng, X.; Laue, T.; Fuchs, H.; Lahann, J.
    2010. Journal of the American Chemical Society, 132, 18023–18025. doi:10.1021/ja108679m
  3. Measurement of DPN-ink viscosity using an AFM cantilever
    Biswas, S.; Hirtz, M.; Lenhert, S.; Fuchs, H.
    2010. Nanotechnology 2010 : Electronics, Devices, Fabrication, MEMS, Fluidics and Computational, Anaheim, Calif., June 21-24, 2010 Proc.on CD-ROM Vol.2 Danville, Calif. : NSTI, 2010, 231–34
2008
  1. Cross-correlations in transport through parallel quantum dots
    Haupt, S.; Aghassi, J.; Hettler, M. H.; Schön, G.
    2008. arXiv.org, 1–10
  2. Co-tunneling assisted sequential tunneling in multi-level quantum dots
    Aghassi, J.; Hettler, M. H.; Schön, G.
    2008. Applied physics letters, 92 (20), Art. Nr. 202101. doi:10.1063/1.2927379
  3. Kinetics of island formation in organic film growth
    Zhong, D. Y.; Hirtz, M.; Wang, W. C.; Dou, R. F.; Chi, L. F.; Fuchs, H.
    2008. Physical Review B, 77, 113404/1–4. doi:10.1103/PhysRevB.77.113404
2007
  1. Electronic transport and noise in quantum dot systems. PhD dissertation
    Aghassi, J.
    2007. Wissenschaftliche Berichte, FZKA-7343 (September 2007) Dissertation, Universität Karlsruhe 2007
2006
  1. Strongly enhanced shot noise in chains of quantum dots
    Aghassi, J.; Thielmann, A.; Hettler, M. H.; Schön, G.
    2006. Applied Physics Letters, 89 (5), Art.Nr.: 52101, 1–4. doi:10.1063/1.2260827
  2. Shot noise transport through two coherent strongly coupled quantum dots
    Aghassi, J.; Thielmann, A.; Hettler, M. H.; Schön, G.
    2006. Physical Review B, 73, 195323/1–10. doi:10.1103/PhysRevB.73.195323
2005
  1. Shot noise in tunneling transport through molecules and quantum dots
    Aghassi, J.; Thielmann, A.; Hettler, M. H.; Schön, G.
    2005. 3rd NTT-BRL School „Decoherence and Noise in Quantum Systems“, Atsugi City, Japan, 31 October - 4. November 2005
2004
  1. Sequential transport in molecules and quantum dots
    Aghassi, J.; Thielmann, A.; Hettler, M. H.; Schön, G.
    2004. WE-Heraeus Seminar - Summerschool: Molecules - Elements of Prospective Nanoelectronics, Wittenberg, Germany, 2.-13. August 2004
2003
  1. Stochastische Heizung in Particle in Cell Simulationen von Plasmagasentladungen. diploma thesis
    Aghassi, J.
    2003. RWTH Aachen
  2. Magnetoresistance studies of the ferromagnetic molecular metal (BEDT-TTF)3[MnCr(C2O4)3] under pressure
    Klehe, A.-K.; Lauhkin, V.; Goddard, P. A.; Symington, J. A.; Aghassi, J.; Singleton, J.; Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J.; Gimenez-Saiz, C.
    2003. Synthetic metals, 133-134, 549–551. doi:10.1016/S0379-6779(02)00342-9