A novel class of non-crystalline materials with controllable atomic/electronic structures corresponding to the structures of modern technologically utilized crystalline materials.
Group Photo Nanoglasses Nanoglass
Nanoglass Members (from left): Soumabha Bag, Vladimir Šepelàk, Richard Brand, Julia Ivanisenko, Horst Hahn, Harsha Nandam, Robert Kruk, Xiaoke Mu, Leonardo Velasco, Reda Chellali, Di Wang, Evgeniy Boltynjuk, Askar Kilmametov, not shown: Thomas Reisinger

In contrast to traditional metallic glasses, that are prepared by rapid quenching of the melt, nanoglasses are created via a bottom-up approach from amorphous nanoparticles and clusters.

Our expertise lies in multiple methods for preparing nanoglasses and their precursor clusters including inert gas cooling (IGC), laser ablation, sputtering, and cluster ion beam depostion. The properties of the resulting nanoglasses are then compared to traditionally prepared metallic glasses via a vast variety of analysis methods such as XRD, TEM, SEM, EXAFS, SAXS, Mössbauer spectroscopy, ATP and many more.

Dr. Julia Ivanisenko
Group Leader
Mechanical synthesis and mechanical properties of nanomaterials

+49 721 608-26961julia ivanisenko does-not-exist.kit edu

Karlsruhe Institute of Technology (KIT)
Institute of Nanotechnology
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen, Germany

Understanding Nanoglasses

Metallic nanoglasses represent a novel development in the field of disordered materials, which was initiated by our research group. In contrast to the metallic glasses, which have been widely reported in the literature and are synthesized by rapid quenching from the molten state, nanoglasses are prepared by consolidation (compaction) of nanoparticles, i.e. completely in the solid state.

It has been demonstrated that nanoglasses exhibit a different structure and as a consequence also different properties compared to rapidly-quenched glasses. Clearly, the presence of the internal nanostructure is the prerequisite of the modified properties.

Metallic nanoglasses have been initially synthesized using the well-established Inert Gas Condensation (IGC) technique, using thermal evaporation of an alloy. As the evaporation is performed in an inert gas atmosphere, nanoparticles are formed, typically in the size range of 5 to 20 nm (average) controlled by the synthesis parameters (total pressure of the inert gas, partial pressure of the evaporating alloy components and type of inert gas). The nanoparticles are transported by the convective inert gas flow from the hot source to a liquid nitrogen cooled cylindrical collector. The nanoparticulate powder is collected and then scraped from the surface of the cold finger, and transferred to an in situ (vacuum) compaction device. The nanopowder is compacted at pressures up to 2 GPa, and subsequently, can be compacted further in an ex situ compaction device, typically up to pressures of 6 GPa.

Alternatively, a sputtering source can be used instead of the thermal evaporation source, thus allowing the preparation of alloys consisting of elements with different vapor pressures. A third alternative is the use of laser ablation in order to vaporize the master alloy. In our group all three systems are employed to prepare a variety of metallic nanoglasses of different material systems.

Fig. NG1: Photos of the Inert Gas Condensation System (IGC) using thermal evaporation (left) and the IGC using laser ablation (right)

In order to prepare even smaller building blocks for the controlled assembly of nanoglasses, we have developed a cluster ion beam deposition system. In this system, clusters containing typically 50 to 1000 atoms, i.e., smaller than 3 nm in diameter, are prepared using a sputter source, and subsequently formed into a cluster ion beam, which can be manipulated inside a UHV beamline by means of electrical and magnetic fields. Using a 90° bending magnet, size selected clusters can be prepared. The impact energy of the cluster ions can be controlled by means of electric fields, from soft landing to hard landing on the substrates, resulting in a variety of different amorphous structures.

Fig. NG2: Schematic (left) and photo (right) of the cluster ion beam deposition system. In the schematic: (a) sputter source for the preparation of the clusters; (b) lens system for formation of cluster ion beam; (c) first deposition stage for non-size selected clusters; (d) time-of-flight mass spectrometer; (e) lens system and Faraday cup; (f) 90° bending magnet; (g) second deposition system for size selected clusters.

Furthermore, nanoglass structures can be prepared by sputtering thin and thick films of the respective alloys under certain deposition parameters, such as gas pressure, angle of deposition, etc. With the correct parameters, columnar structures can be obtained, which resemble the structures observed using the compaction route described above.

Fig. NG3: Photo of the sputter deposition system for the preparation of thin and thick films with a columnar nanoglass structure (left) and SEM image of the columnar structures observed in a sputtered film (right).

Using the above synthesis routes, our group has synthesized many different amorphous alloy systems in the nanoglass structure, including PdSi, FeSc, CuZr, CuSc using the compaction route starting from nanoparticles, and NiTiCu, PdSi and TiZrCuPd films using the film sputtering technique. 

We have employed many different techniques to analyze the structure of nanoglasses and always compared the results with the structure of reference glasses, prepared by rapid quenching from the melt. The characterization techniques include conventional X-ray diffraction (XRD), determination of the radial distribution function (RDF) using synchrotron radiation and transmission electron microscopy , EXAFS, SAXS, Mössbauer spectroscopy (MS), positron annihilation spectroscopy (PAS), scanning (SEM) and transmission (TEM) electron microscopy, atom probe tomography (APT), atomic force (AFM) and scanning tunneling (STM) microscopy, and others.

The current understanding based on the results of the above mentioned techniques of the structure of nanoglasses is as follows:

  1. In the nanoglass structure two distinct atomic environments are identified, while in rapidly quenched amorphous alloys of identical composition only one atomic environment is observed (concluded from results of TEM, AFM, STM, SAXS, PAS, MS, APT).
  2. One component corresponds in respect of its structure and atomic environment to that of the rapidly quenched material, while the other component, called interfacial component, is characterized by a different chemical composition and by an increased free volume. 
  3. The interfacial component only appears after compaction of the amorphous nanoparticles.
  4. The interfacial structure is well defined (as seen from the line width of MS) and seems to exhibit a higher degree of short- and medium range order (as concluded from the RDF), compared to the well defined rapidly quenched structure.
  5. The free volume of the interfacial component is substantially larger than that of the rapidly quenched material.

As a consequence of the structural differences between the nanoglasses and the rapidly quenched counterparts, also the mechanical, magnetic and thermal properties are drastically different.

Fig. NG4: Nanoindentation of different amorphous materials of Cu50Zr50 (left) and SEM images of samples of micropillars made of a nanoglass (middle) and a rapidly quenched glass (right). No shear bands are observed in the nanoglass, while the rapidly quenched glass fails catastrophically.
Fig. NG5: Magnetization curves of Fe90Sc10 nanoglass (red) and rapidly quenched glass (black) measured at room temperature. Clearly the ferromagnetic behavior of the nanoglass can be seen, while the rapidly quenched glass is paramagnetic.
Fig. NG6: Differential scanning calorimetry of Cu50Zr50 nanoglass, rapidly quenched glass and a nanoglass after annealing at 350 °C. It is obvious that the crystallization temperature is higher for the nanoglass than for the rapidly quenched glass.


Nanoglass YouTube Video feature Professor Horst Hahn
Nanoglass- material of the future

Learn more about Nanoglass in this interview with our institute director, Professor Horst Hahn, on YouTube (German).

Watch the video

Selected Publications

  1. Enhanced diffusion in thin-film Cu-Zr nanoglasses
    Aaron Rigoni, C.; Boltynjuk, E.; Voigt, H.; Rösner, H.; Tyler, B.; Hahn, H.; Divinski, S. V.; Wilde, G.
    2024. Acta Materialia, 265, Art-Nr.: 119634. doi:10.1016/j.actamat.2023.119634
  2. In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasses
    Voigt, H.; Rigoni, A.; Boltynjuk, E.; Rösner, H.; Hahn, H.; Wilde, G.
    2023. Materials Research Letters, 11 (12), 1022–1030. doi:10.1080/21663831.2023.2278597
  3. Enhanced activity and durability of FeCoCrMoCBY nanoglass in acidic hydrogen evolution reaction
    Yan, M.; Chen, S.; Wu, S.; Zhou, X.; Fu, S.; Wang, D.; Kübel, C.; Hahn, H.; Lan, S.; Feng, T.
    2024. Journal of Materials Science & Technology, 170, 212–220. doi:10.1016/j.jmst.2023.05.067
  4. Nanoscale Confinement of Dip‐Pen Nanolithography Written Phospholipid Structures on CuZr Nanoglasses
    Vasantham, S. K.; Boltynjuk, E.; Nandam, S. H.; Berganza Eguiarte, E.; Fuchs, H.; Hahn, H.; Hirtz, M.
    2024. Advanced Materials Interfaces, 11 (2), Art.-Nr.: 2300721. doi:10.1002/admi.202300721
  5. Enhanced specific heat of the Sc79Fe21 nanoglass compared to the Sc79Fe21 amorphous melt-spun ribbon in a temperature range of 150–300 K
    Wang, C.; Hu, Q.; Luo, J.; Yin, N.; Shi, Q.; Gleiter, H.; Hahn, H.
    2023. Materials Letters, 349, 134706. doi:10.1016/j.matlet.2023.134706
  6. Evidence for Glass–glass Interfaces in a Columnar Cu–Zr Nanoglass
    Voigt, H.; Rigoni, A.; Boltynjuk, E.; Chellali, M. R.; Tyler, B.; Rösner, H.; Divinski, S.; Hahn, H.; Wilde, G.
    2023. Advanced Functional Materials, 33 (44), Art.-Nr.: 2302386. doi:10.1002/adfm.202302386
  7. Nano-alloying and nano-chemistry of the immiscible elements Fe and Cu in a FeSc–Cu nanoglass
    Singh, S. P.; Chellali, M. R.; Boll, T.; Gleiter, H.; Hahn, H.
    2023. Materials Advances, 4 (12), 2604–2611. doi:10.1039/d3ma00167a
  8. Direct Urea/HO Fuel Cell with a Hierarchical Porous Nanoglass Anode for High-Efficiency Energy Conversion
    Pei, C.; Pei, C.; Chen, S.; Zhou, M.; Chen, X.; Sun, B.; Lan, S.; Hahn, H.
    2023. ACS Applied Materials and Interfaces, 15 (20), 24319–24328. doi:10.1021/acsami.3c00774
  9. From patterning heterogeneity to nanoglass: A new approach to harden and toughen metallic glasses
    Wang, Y.; Gleiter, H.; Li, M.
    2022. MRS Bulletin, 48 (1), 56–67. doi:10.1557/s43577-022-00347-w
  10. Strain rate sensitivity of a CuZr metallic and nanoglass
    Sharma, A.; Hirmukhe, S. S.; Nandam, S. H.; Hahn, H.; Singh, I.; Narayan, R. L.; Prasad, K. E.
    2022. Journal of Alloys and Compounds, 921, Art.-Nr.: 165991. doi:10.1016/j.jallcom.2022.165991
  11. Investigation of softening induced indentation size effect in Nanoglass and Metallic glasss
    Hirmukhe, S. S.; Sharma, A.; Nandam, S. H.; Hahn, H.; Prasad, K. E.; Singh, I.
    2022. Journal of Non-Crystalline Solids, 577, Art. Nr.: 121316. doi:10.1016/j.jnoncrysol.2021.121316
  12. Excess free volume and structural properties of inert gas condensation synthesized nanoparticles based CuZr nanoglasses
    Zheng, K.; Yuan, S.; Hahn, H.; Branicio, P. S.
    2021. Scientific reports, 11 (1), Art.Nr.: 19246. doi:10.1038/s41598-021-98494-8
  13. Evaluation of Microstructure, Mechanical and Thermal Properties of Ti–Zr–Pd–Cu and Ti–Zr–Pd–Cu–Bi Nanoglass Thin Films
    Mohri, M.; Chellali, M. R.; Wang, D.; Ivanisenko, J.
    2022. Metals and Materials International, 28, 1650–1661. doi:10.1007/s12540-021-01051-1
  14. Effect of Structural Relaxation on the Indentation Size Effect and Deformation Behavior of Cu–Zr–Based Nanoglasses
    Sharma, A.; Nandam, S. H.; Hahn, H.; Prasad, K. E.
    2021. Frontiers in Materials, 8, Art. Nr.: 676764. doi:10.3389/fmats.2021.676764
  15. Controlling shear band instability by nanoscale heterogeneities in metallic nanoglasses
    Nandam, S. H.; Schwaiger, R.; Kobler, A.; Kübel, C.; Wang, C.; Ivanisenko, Y.; Hahn, H.
    2021. Journal of materials research, 36, 2903–2914. doi:10.1557/s43578-021-00285-4
  16. On the differences in shear band characteristics between a binary Pd-Si metallic and nanoglass
    Sharma, A.; Nandam, S. H.; Hahn, H.; Prasad, K. E.
    2021. Scripta materialia, 191, 17–22. doi:10.1016/j.scriptamat.2020.09.009
  17. Magnetic TbFe Nanoglass for Cryogenic Permanent Magnet Undulator
    Singh, S. P.; Witte, R.; Clemens, O.; Sarkar, A.; Velasco, L.; Kruk, R.; Hahn, H.
    2020. ACS applied nano materials, 3 (7), 7281–7290. doi:10.1021/acsanm.0c01674
  18. NiNb Nanoglass for Tunable Magnetism and Methanol Oxidation
    Baksi, A.; Nandam, S. H.; Wang, D.; Kruk, R.; Chellali, M. R.; Ivanisenko, J.; Gallino, I.; Hahn, H.; Bag, S.
    2020. ACS applied nano materials, 3 (7), 7252–7259. doi:10.1021/acsanm.0c01584
  19. Nanoglass–Nanocrystal Composite - a Novel Material Class for Enhanced Strength–Plasticity Synergy
    Katnagallu, S.; Wu, G.; Singh, S. P.; Nandam, S. H.; Xia, W.; Stephenson, L. T.; Gleiter, H.; Schwaiger, R.; Hahn, H.; Herbig, M.; Raabe, D.; Gault, B.; Balachandran, S.
    2020. Small, 16 (39), Art.-Nr. 2004400. doi:10.1002/smll.202004400
  20. Nonenzymatic Glucose Sensing Using Ni60Nb40 Nanoglass
    Bag, S.; Baksi, A.; Nandam, S. H.; Wang, D.; Ye, X.; Ghosh, J.; Pradeep, T.; Hahn, H.
    2020. ACS nano, 14 (5), 5543–5552. doi:10.1021/acsnano.9b09778
  21. Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses
    Nandam, S. H.; Adjaoud, O.; Schwaiger, R.; Ivanisenko, Y.; Chellali, M. R.; Wang, D.; Albe, K.; Hahn, H.
    2020. Acta materialia, 193, 252–260. doi:10.1016/j.actamat.2020.03.021
  22. Elastic Moduli of Nanoglasses and Melt-Spun Metallic Glasses by Ultrasonic Time-of-Flight Measurements
    Arnold, W.; Birringer, R.; Braun, C.; Gleiter, H.; Hahn, H.; Nandam, S. H.; Singh, S. P.
    2020. Transactions of the Indian Institute of Metals, 73 (5), 1363–1371. doi:10.1007/s12666-020-01969-x
  23. Deformation-induced atomic rearrangements and crystallization in the shear bands of a Tb75Fe25 nanoglass
    Singh, S. P.; Chellali, M. R.; Velasco, L.; Ivanisenko, Y.; Boltynjuk, E.; Gleiter, H.; Hahn, H.
    2020. Journal of alloys and compounds, 821, Art.-Nr. 153486. doi:10.1016/j.jallcom.2019.153486
  24. Magnetic properties of iron clusters in Sc₇₅Fe₂₅ nanoglass
    Ghafari, M.; Mu, X.; Bednarcik, J.; Hutchison, W. D.; Gleiter, H.; Campbell, S. J.
    2020. Journal of magnetism and magnetic materials, 494, 165819. doi:10.1016/j.jmmm.2019.165819
  25. Magnetic contributions to the low-temperature specific heat of ScFe nanoglass
    Wang, C.; Palit, M.; Yin, N.; Shi, Q.; Ivanisenko, Y.; Gleiter, H.; Hahn, H.
    2019. Journal of applied physics, 125 (4), Article: 045111. doi:10.1063/1.5082579
  26. Direct observation of fast surface dynamics in sub-10-nm nanoglass particles
    Chen, N.; Wang, D.; Guan, P. F.; Bai, H. Y.; Wang, W. H.; Zhang, Z. J.; Hahn, H.; Gleiter, H.
    2019. Applied physics letters, 114 (4), Article: 043103. doi:10.1063/1.5052016
  27. Structure and Properties of Nanoglasses
    Ivanisenko, Y.; Kübel, C.; Nandam, S. H.; Wang, C.; Mu, X.; Adjaoud, O.; Albe, K.; Hahn, H.
    2018. Advanced engineering materials, 20 (12), Article: 1800404. doi:10.1002/adem.201800404
  28. Tuning the Curie temperature of Fe90Sc10 nanoglasses by varying the volume fraction and the composition of the interfaces
    Wang, C.; Mu, X.; Chellali, M. R.; Kilmametov, A.; Ivanisenko, Y.; Gleiter, H.; Hahn, H.
    2019. Scripta materialia, 159, 109–112. doi:10.1016/j.scriptamat.2018.09.025
  29. Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling
    Liu, W.-H.; Sun, B. A.; Gleiter, H.; Lan, S.; Tong, Y.; Wang, X.-L.; Hahn, H.; Yang, Y.; Kai, J.-J.; Liu, C. T.
    2018. Nano letters, 18 (7), 4188–4194. doi:10.1021/acs.nanolett.8b01007
  30. Electrical resistivity and wave character of free electrons in amorphous and nanoglass Sc75Fe25
    Ghafari, M.; Hutchison, W. D.; Campbell, S. J.; Gleiter, H.; Hahn, H.; Feng, T.
    2018. Journal of physics / Condensed matter, 30 (2), Art. Nr.: 025702. doi:10.1088/1361-648X/aa9adf
  31. A novel Ti-based nanoglass composite with submicron–nanometer-sized hierarchical structures to modulate osteoblast behaviors
    Chen, N.; Shi, X.; Witte, R.; Nakayama, K. S.; Ohmura, K.; Wu, H.; Takeuchi, A.; Hahn, H.; Esashi, M.; Gleiter, H.; Inoue, A.; Louzguine, D. V.
    2013. Journal of materials chemistry / B, 1 (20), 2568–2574. doi:10.1039/c3tb20153h
  32. Corrigendum to “Atomic structure of Fe 90 Sc 10 glassy nanoparticles and nanoglasses” [Scr. Mater. 139 (2007) 9–12] (Erratum)
    Wang, C.; Guo, X.; Ivanisenko, Y.; Goel, S.; Nirschl, H.; Gleiter, H.; Hahn, H.
    2018. Scripta materialia, 146, 349. doi:10.1016/j.scriptamat.2017.11.024
  33. Effect of elemental segregation on mechanical properties of metallic nanoglasses
    Nandam, S. H.; Schwaiger, R.; Wang, D.; Chellali, R.; Ivanisenko, Y.; Hahn, H.
    2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS (2018), Berlin, Germany, March 11–16, 2018
  34. Ni-Ti nanoglasses: amorphous structure, and magnetic properties
    Chellali, M. R.; Nandam, S. H.; Li, S.; Estrada, L. V.; Kruk, R.; Hahn, H.
    2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS (2018), Berlin, Germany, March 11–16, 2018
  35. Synthesis and characterization of Tb75Fe25 nanoglass
    Singh, S. P.; Gleiter, H.; Hahn, H.
    2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS (2018), Berlin, Germany, March 11–16, 2018
  36. Low temperature structural stability of Fe₉₀Sc₁₀ nanoglasses
    Wang, C.; Feng, T.; Wang, D.; Mu, X.; Ghafari, M.; Witte, R.; Kobler, A.; Kübel, C.; Ivanisenko, Y.; Gleiter, H.; Hahn, H.
    2018. Materials Research Letters, 6 (3), 178–183. doi:10.1080/21663831.2018.1430622
  37. Cu-Zr nanoglasses : Atomic structure, thermal stability and indentation properties
    Nandam, S. H.; Ivanisenko, Y.; Schwaiger, R.; Śniadecki, Z.; Mu, X.; Wang, D.; Chellali, R.; Boll, T.; Kilmametov, A.; Bergfeldt, T.; Gleiter, H.; Hahn, H.
    2017. Acta materialia, 136, 181–189. doi:10.1016/j.actamat.2017.07.001
  38. Atomic structure of Fe90Sc10 glassy nanoparticles and nanoglasses
    Wang, C.; Guo, X.; Ivanisenko, Y.; Goel, S.; Nirschl, H.; Gleiter, H.; Hahn, H.
    2017. Scripta materialia, 139, 9–12. doi:10.1016/j.scriptamat.2017.06.007
  39. Ni-P nanoglass prepared by multi-phase pulsed electrodeposition
    Guo, C.; Fang, Y.; Wu, B.; Lan, S.; Peng, G.; Wang, X.-L.; Hahn, H.; Gleiter, H.; Feng, T.
    2016. Materials Research Letters, 5 (5), 293–299. doi:10.1080/21663831.2016.1264495
  40. Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass
    Wang, C.; Wang, D.; Mu, X.; Goel, S.; Feng, T.; Ivanisenko, Y.; Hahn, H.; Gleiter, H.
    2016. Materials letters, 181, 248–252. doi:10.1016/j.matlet.2016.05.189
  41. Nanoglasses: A New Kind of Noncrystalline Material and the Way to an Age of New Technologies?
    Gleiter, H.
    2016. Small, 12 (16), 2225–2233. doi:10.1002/smll.201500899
  42. Sample size effects on strength and deformation mechanism of Sc₇₅Fe₂₅ nanoglass and metallic glass
    Wang, X.; Jiang, F.; Hahn, H.; Li, J.; Gleiter, H.; Sun, J.; Fang, J.
    2016. Scripta Materialia, 116, 95–99. doi:10.1016/j.scriptamat.2016.01.036
  43. Mechanisms of Nanoglass Ultrastability
    Danilov, D.; Hahn, H.; Gleiter, H.; Wenzel, W.
    2016. ACS Nano, 10 (3), 3241–3247. doi:10.1021/acsnano.5b05897
  44. Nanoscale morphology of Ni₅₀Ti₄₅Cu₅ nanoglass
    Sniadecki, Z.; Wang, D.; Ivanisenko, Y.; Chakravadhanula, V. S. K.; Kübel, C.; Hahn, H.; Gleiter, H.
    2016. Materials characterization, 113, 26–33. doi:10.1016/j.matchar.2015.12.025
  45. A nanoglass alloying immiscible Fe and Cu at the nanoscale
    Chen, N.; Wang, D.; Feng, T.; Kruk, R.; Yao, K. F.; Louzguine-Luzgin, D. V.; Hahn, H.; Gleiter, H.
    2015. Nanoscale, 7, 6607–6611. doi:10.1039/C5NR01406A
  46. Plasticity of a scandium-based nanoglass
    Wang, X. L.; Jiang, F.; Hahn, H.; Gleiter, H.; Sun, J.; Fang, J. X.
    2015. Scripta materialia, 98, 40–43. doi:10.1016/j.scriptamat.2014.11.010
  47. Influence of interface on structure and magnetic properties of Fe₅₀B₅₀ nanoglass
    Stoesser, A.; Ghafari, M.; Klimametov, A.; Gleiter, H.; Sakurai, Y.; Itou, M.; Kohara, S.; Hahn, H.; Kamali, S.
    2014. Journal of applied physics, 116, 134305/1–7. doi:10.1063/1.4897153
  48. Thermal and plastic behavior of nanoglasses
    Franke, O.; Leisen, D.; Gleiter, H.; Hahn, H.
    2014. Journal of materials research, 29, 1210–1216. doi:10.1557/jmr.2014.101
  49. Nanoglasses: A new kind of noncrystalline materials
    Gleiter, H.
    2013. Beilstein Journal of Nanotechnology, 4, 517–533. doi:10.3762/bjnano.4.61
  50. Evidence for enhanced ferromagnetism in an iron-based nanoglass
    Witte, R.; Feng, T.; Fang, J. X.; Fischer, A.; Ghafari, M.; Kruk, R.; Brand, R. A.; Wang, D.; Hahn, H.; Gleiter, H.
    2013. Applied physics letters, 103, 073106/1–5. doi:10.1063/1.4818493
  51. Structural investigations of interfaces in Fe₉₀Sc₁₀ nanoglasses using high-energy x-ray diffraction
    Ghafari, M.; Kohara, S.; Hahn, H.; Gleiter, H.; Feng, T.; Witte, R.; Kamali, S.
    2012. Applied Physics Letters, 100, 133111/1–4. doi:10.1063/1.3699228
  52. Evidence of itinerant magnetism in a metallic nanoglass
    Ghafari, M.; Hahn, H.; Gleiter, H.; Sakurai, Y.; Itou, M.; Kamali, S.
    2012. Applied Physics Letters, 101, 243104/1–4. doi:10.1063/1.4769816
  53. Atomic structure and structural stability of Sc₇₅Fe₂₅ nanoglasses
    Fang, J. X.; Vainio, U.; Puff, W.; Würschum, R.; Wang, X. L.; Wang, D.; Ghafari, M.; Jiang, F.; Sun, J.; Hahn, H.; Gleiter, H.
    2012. Nano Letters, 12, 458–463. doi:10.1021/nl2038216
  54. Short range order around Sc atoms in Fe₉₀Sc₁₀ nanoglasses using fluorescence X-ray absorption spectroscopy
    Leon, A.; Rothe, J.; Hahn, H.; Gleiter, H.
    2012. Revue de Metallurgie, 109, 35–39. doi:10.1051/metal/2011079
  55. Structure, stability and mechanical proeprties of internal interfaces in Cu₆₄Zr₃₆ nanoglasses studied by MD simulations
    Ritter, Y.; Sopu, D.; Gleiter, H.; Albe, K.
    2011. Acta Materialia, 59, 6588–6593. doi:10.1016/j.actamat.2011.07.013