High-Entropy Materials (HEM)

The High Entropy Materials Group focuses on the fundamental understanding of the high entropy concept as well as on correlating material structure and composition to its properties for a wide range of applications.
Group Photo HEM HEO
High-Entropy Materials Group

The High-Entropy Materials group works on the comprehensive understanding of the high-entropy concept and on the utilization of high entropy materials (HEM) for different applications. Due to the versatility of HEM regarding composition and the connected structure/property relationships, a multitude of different areas of applications is conceivable.

Besides general investigations about the high-entropy concept itself and how to predict propterties in HEM, more application oriented topics are in our focus of interest and presented more in detail on the respective topic pages below. They include applications in electronic devices and energy storage, catalysis, band structure tailoring, and mangetism, as well as method development of high-throughput synthesis and analysis.

Our Research on High Entropy Materials

HEM promise manifold interesting properties and a huge variety of possible applications. We research HEM with respect to many different aspects.
General Features
Structure, Theory, and Synthesis

 Investigating HEM structures, understanding the theoretical background, and developing new synthesis routes.

General Features
Electrochemical Properties
Electrochemical Properties

Application of HEMs for energy storage materials, electrolytes and utilization as catalysts.

Electrochemistry of HEM
High-Throughput Methodologies
High-Throughput Methods

High-throuput methods for HEM using automated synthesis and analysis in combination with machine learning.

HTSA
HEM Magneto-Electronic Properties Teaser
Magneto-Electronic Properties

Exploring the magento-electronic phase space of HEMs utilizing chemical disorder and strain engineering

Mangeto-Electronics

Recent Publications


Researchers Working on High-Entropy Materials
Portrait Name E-Mail Phone
Abishek Sarkar
abhishek sarkar does-not-exist.kit edu +49 721 608-28830
Ben Breitung
ben breitung does-not-exist.kit edu +49 721 608-23109
David Stenzel
david stenzel does-not-exist.kit edu +49 721 608-28906
Felix Neuper
felix neuper does-not-exist.kit edu +49 721 608-28687
Horst Hahn
horst hahn does-not-exist.kit edu +49 721 608-26350
Ibrahim_Issac
ibrahim issac does-not-exist.kit edu +49 721 608-28919
Junbo Wang
junbo wang does-not-exist.kit edu +49 721 608-28923
Leonardo Velasco Estrada
leonardo estrada does-not-exist.kit edu +49 721 608-28830
Ling Lin
ling lin does-not-exist.partner kit edu +49 721 608-26364
Headshot_Miriam_1.png
miriam botros does-not-exist.kit edu +49 721 608-28973
Parvathy Anitha Sukkurji
parvathy anitha does-not-exist.partner kit edu +49 721 608-26963
Qingsong Wang
qingsong wang does-not-exist.kit edu +49 721 608-28102
R. Kruk
robert kruk does-not-exist.kit edu +49 721 608-25916
Simon Schweidler
simon schweidler does-not-exist.kit edu +49 (0) 721 608-28906
Surya Abhishek Singaraju
surya singaraju does-not-exist.kit edu +49 721 608-26978
Tessy Theres Baby
tessy baby does-not-exist.kit edu +49 721 608-28973
Portrait picture of  Yanjiao Ma
yanjiao ma does-not-exist.kit edu +49 721 608-26444
Yanyan Cui
yanyan cui does-not-exist.partner kit edu +49 721 608-26444

Selected Publications


High-Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction
Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Kante, M. V.; Agrawal, D.; Hahn, H.; Aghassi, J.; Fichtner, M.; Breitung, B.; Schweidler, S.
2023, May 16. doi:10.5445/IR/1000158543
Synergy of cations in high entropy oxide lithium ion battery anode
Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B.; Kübel, C.; Mu, X.
2023. Nature Communications, 14, Art.-Nr.: 1487. doi:10.1038/s41467-023-37034-6
Embracing disorder in solid-state batteries
Botros, M.; Janek, J.
2022. Science, 378 (6626), 1273–1274. doi:10.1126/science.adf3383
P2-type layered high-entropy oxides as sodium-ion cathode materials
Wang, J.; Dreyer, S. L.; Wang, K.; Ding, Z.; Diemant, T.; Karkera, G.; Ma, Y.; Sarkar, A.; Zhou, B.; Gorbunov, M. V.; Omar, A.; Mikhailova, D.; Presser, V.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Wang, Q.
2022. Materials Futures, 1 (3), Art.Nr. 035104. doi:10.1088/2752-5724/ac8ab9
Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
Schweidler, S.; Tang, Y.; Lin, L.; Karkera, G.; Alsawaf, A.; Bernadet, L.; Breitung, B.; Hahn, H.; Fichtner, M.; Tarancón, A.; Botros, M.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 983979. doi:10.3389/fenrg.2022.983979
Synergy of cations in high entropy oxide lithium ion battery anode
Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B.; Kübel, C.; Mu, X.
2023, January 11. doi:10.5445/IR/1000154295
High entropy fluorides as conversion cathodes with tailorable electrochemical performance
Cui, Y.; Sukkurji, P. A.; Wang, K.; Azmi, R.; Nunn, A. M.; Hahn, H.; Breitung, B.; Ting, Y.-Y.; Kowalski, P. M.; Kaghazchi, P.; Wang, Q.; Schweidler, S.; Botros, M.
2022. Journal of Energy Chemistry, 72, 342–351. doi:10.1016/j.jechem.2022.05.032
High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst
Stenzel, D.; Zhou, B.; Okafor, C.; Kante, M. V.; Lin, L.; Melinte, G.; Bergfeldt, T.; Botros, M.; Hahn, H.; Breitung, B.; Schweidler, S.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 942314. doi:10.3389/fenrg.2022.942314
Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries
Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W.; Fichtner, M.; Ma, Y.; Breitung, B.; Brezesinski, T.
2022. Advanced Functional Materials, 32 (34), Art.Nr. 2202372. doi:10.1002/adfm.202202372
Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation
Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
2022. Coatings, 12 (3), 402. doi:10.3390/coatings12030402
Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
Wang, L.; Torkamanzadeh, M.; Majed, A.; Zhang, Y.; Wang, Q.; Breitung, B.; Feng, G.; Naguib, M.; Presser, V.
2022. Advanced sustainable systems, 6 (3), Artk.Nr:: 2100383. doi:10.1002/adsu.202100383
High-Entropy Sulfides as Electrode Materials for Li-Ion Batteries
Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; Breitung, B.
2022. Advanced Energy Materials, 12 (8), Art.-Nr. 2103090. doi:10.1002/aenm.202103090
Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode
Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
2021. Scientific reports, 11 (1), Article no: 23381. doi:10.1038/s41598-021-02685-2
High‐Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next‐Generation Synthesis and Applications
Wang, Q.; Velasco, L.; Breitung, B.; Presser, V.
2021. Advanced energy materials, 11 (47), Art. Nr.: 2102355. doi:10.1002/aenm.202102355
High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage
Ma, Y.; Ma, Y.; Dreyer, S. L.; Wang, Q.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B.; Brezesinski, T.
2021. Advanced Materials, 33 (34), Art. Nr.: 2101342. doi:10.1002/adma.202101342
High-entropy energy materials: Challenges and new opportunities
Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B.
2021. Energy and Environmental Science, 14 (5), 2883–2905. doi:10.1039/d1ee00505g
Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis
Sukkurji, P. A.; Cui, Y.; Lee, S.; Wang, K.; Azmi, R.; Sarkar, A.; Indris, S.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Wang, Q.; Botros, M.; Breitung, B.
2021. Journal of Materials Chemistry A, 9 (14), 8998–9009. doi:10.1039/d0ta10209a
High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates
Stenzel, D.; Issac, I.; Wang, K.; Azmi, R.; Singh, R.; Jeong, J.; Najib, S.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.; Schweidler, S.; Breitung, B.
2021. Inorganic chemistry, 60 (1), 115–123. doi:10.1021/acs.inorgchem.0c02501
Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors
Jeong, J.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2020. ChemElectroChem, 7 (13), 2735–2739. doi:10.1002/celc.202000305
Spinel to Rock-Salt Transformation in High Entropy Oxides with Li Incorporation
Wang, J.; Stenzel, D.; Azmi, R.; Najib, S.; Wang, K.; Jeong, J.; Sarkar, A.; Wang, Q.; Sukkurji, P. A.; Bergfeldt, T.; Botros, M.; Maibach, J.; Hahn, H.; Brezesinski, T.; Breitung, B.
2020. Electrochem, 1 (1), 60–74. doi:10.3390/electrochem1010007
Lithium containing layered high entropy oxide structures
Wang, J.; Cui, Y.; Wang, Q.; Wang, K.; Huang, X.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Schweidler, S.; Brezesinski, T.; Breitung, B.
2020. Scientific reports, 10, Art.-Nr.: 18430. doi:10.1038/s41598-020-75134-1
Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides
Lin, L.; Wang, K.; Azmi, R.; Wang, J.; Sarkar, A.; Botros, M.; Najib, S.; Cui, Y.; Stenzel, D.; Anitha Sukkurji, P.; Wang, Q.; Hahn, H.; Schweidler, S.; Breitung, B.
2020. Journal of materials science, 55, 16879–16889. doi:10.1007/s10853-020-05183-4
High entropy oxides: The role of entropy, enthalpy and synergy
Sarkar, A.; Breitung, B.; Hahn, H.
2020. Scripta materialia, 187, 43–48. doi:10.1016/j.scriptamat.2020.05.019
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry
Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
On the homogeneity of high entropy oxides: An investigation at the atomic scale
Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039
High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties
Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
2019. Advanced materials, 1806236. doi:10.1002/adma.201806236
High entropy oxides as anode material for Li-ion battery applications: A practical approach
Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
High entropy oxides for reversible energy storage
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; Biasi, L. de; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B.
2018. Nature Communications, 9 (1), Article number: 3400. doi:10.1038/s41467-018-05774-5