INT | Nanostructured Materials

High-Entropy Materials (HEM)

The High Entropy Materials Group focuses on the fundamental understanding of the high entropy concept as well as on correlating material structure and composition to its properties for a wide range of applications.
Group Photo HEM
High-Entropy Materials Group

The High-Entropy Materials group works on the comprehensive understanding of the high-entropy concept and on the utilization of high entropy materials (HEM) for different applications. Due to the versatility of HEM regarding composition and the connected structure/property relationships, a multitude of different areas of applications is conceivable.

Besides general investigations about the high-entropy concept itself and how to predict propterties in HEM, more application oriented topics are in our focus of interest and presented more in detail on the respective topic pages below. They include applications in electronic devices and energy storage, catalysis, band structure tailoring, and mangetism, as well as method development of high-throughput synthesis and analysis.

Our Research on High Entropy Materials

HEM promise manifold interesting properties and a huge variety of possible applications. We research HEM with respect to many different aspects.
General Features
Structure, Theory, and Synthesis

 Investigating HEM structures, understanding the theoretical background, and developing new synthesis routes.

General Features
Electrochemical Properties
Electrochemical Properties

Application of HEMs for energy storage materials, electrolytes and utilization as catalysts.

Electrochemistry of HEM
High-Throughput Methodologies
High-Throughput Methods

High-throuput methods for HEM using automated synthesis and analysis in combination with machine learning.

HTSA
HEM Magneto-Electronic Properties Teaser
Magneto-Electronic Properties

Exploring the magento-electronic phase space of HEMs utilizing chemical disorder and strain engineering

Mangeto-Electronics

Recent Publications


Researchers Working on High-Entropy Materials
Portrait Name E-Mail Phone
Parvathy Anitha Sukkurji
parvathy anithaNum5∂partner kit edu +49 721 608-26963
Tessy Theres Baby
tessy babyIid1∂kit edu +49 721 608-28973
Headshot_Miriam_1.png
miriam botrosDca1∂kit edu +49 721 608-28973
Ben Breitung
ben breitungWsg4∂kit edu +49 721 608-23109
Yanyan Cui
yanyan cuiXzt0∂partner kit edu +49 721 608-28115
Horst Hahn
horst hahnDen4∂kit edu +49 721 608-26351
Ibrahim_Issac
ibrahim issacQjy2∂kit edu +49 721 608-28919
R. Kruk
robert krukEsg5∂kit edu +49 721 608-25916
Ling Lin
ling linZyk7∂partner kit edu +49 721 608-26364
Portrait picture of  Yanjiao Ma
yanjiao maQjn6∂kit edu +49 721 608-26444
Felix Neuper
felix neuperQeg3∂kit edu +49 721 608-28687
Abishek Sarkar
abhishek sarkarUbm4∂kit edu +49 721 608-28830
Simon Schweidler
simon schweidlerBuh5∂kit edu +49 (0) 721 608-28906
Surya Abhishek Singaraju
surya singarajuBkg8∂kit edu +49 721 608-26978
David Stenzel
david stenzelNpk5∂kit edu +49 721 608-28906
Leonardo Velasco Estrada
leonardo estradaVbg9∂kit edu +49 721 608-28830
Junbo Wang
junbo wangMsy1∂kit edu +49 721 608-28923
Qingsong Wang
qingsong wangRnn1∂kit edu +49 721 608-28102

Selected Publications


Lithium containing layered high entropy oxide structures.
Wang, J.; Cui, Y.; Wang, Q.; Wang, K.; Huang, X.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Schweidler, S.; Brezesinski, T.; Breitung, B.
2020. Scientific reports, 10, Art.-Nr.: 18430. doi:10.1038/s41598-020-75134-1
Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides.
Lin, L.; Wang, K.; Azmi, R.; Wang, J.; Sarkar, A.; Botros, M.; Najib, S.; Cui, Y.; Stenzel, D.; Anitha Sukkurji, P.; Wang, Q.; Hahn, H.; Schweidler, S.; Breitung, B.
2020. Journal of materials science, 55, 16879–16889. doi:10.1007/s10853-020-05183-4
High entropy oxides: The role of entropy, enthalpy and synergy.
Sarkar, A.; Breitung, B.; Hahn, H.
2020. Scripta materialia, 187, 43–48. doi:10.1016/j.scriptamat.2020.05.019
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry.
Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
On the homogeneity of high entropy oxides: An investigation at the atomic scale.
Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039
High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties.
Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
2019. Advanced materials, 1806236. doi:10.1002/adma.201806236
High entropy oxides as anode material for Li-ion battery applications: A practical approach.
Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
High entropy oxides for reversible energy storage.
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B.
2018. Nature Communications, 9 (1), Article number: 3400. doi:10.1038/s41467-018-05774-5