High-Entropy Materials (HEM)

The High Entropy Materials Group focuses on the fundamental understanding of the high entropy concept as well as on correlating material structure and composition to its properties for a wide range of applications.
Group Photo HEM HEO
High-Entropy Materials Group

The High-Entropy Materials group works on the comprehensive understanding of the high-entropy concept and on the utilization of high entropy materials (HEM) for different applications. Due to the versatility of HEM regarding composition and the connected structure/property relationships, a multitude of different areas of applications is conceivable.

Besides general investigations about the high-entropy concept itself and how to predict propterties in HEM, more application oriented topics are in our focus of interest and presented more in detail on the respective topic pages below. They include applications in electronic devices and energy storage, catalysis, band structure tailoring, and mangetism, as well as method development of high-throughput synthesis and analysis.

Our Research on High Entropy Materials

HEM promise manifold interesting properties and a huge variety of possible applications. We research HEM with respect to many different aspects.
General Features
Structure, Theory, and Synthesis

 Investigating HEM structures, understanding the theoretical background, and developing new synthesis routes.

General Features
Electrochemical Properties
Electrochemical Properties

Application of HEMs for energy storage materials, electrolytes and utilization as catalysts.

Electrochemistry of HEM
High-Throughput Methodologies
High-Throughput Methods

High-throuput methods for HEM using automated synthesis and analysis in combination with machine learning.

HTSA
HEM Magneto-Electronic Properties Teaser
Magneto-Electronic Properties

Exploring the magento-electronic phase space of HEMs utilizing chemical disorder and strain engineering

Mangeto-Electronics

Recent Publications


Researchers Working on High-Entropy Materials
Portrait Name E-Mail Phone
David Stenzel
david stenzel does-not-exist.kit edu +49 721 608-28906
Simon Schweidler
simon schweidler does-not-exist.kit edu +49 (0) 721 608-28906
Felix Neuper
felix neuper does-not-exist.kit edu +49 721 608-28687
Ling Lin
ling lin does-not-exist.partner kit edu +49 721 608-26364
R. Kruk
robert kruk does-not-exist.kit edu +49 721 608-25916
Horst Hahn
horst hahn does-not-exist.kit edu +49 721 608-26350
Yanyan Cui
yanyan cui does-not-exist.partner kit edu +49 721 608-26444
Ben Breitung
ben breitung does-not-exist.kit edu +49 721 608-23109
Headshot_Miriam_1
miriam botros does-not-exist.kit edu +49 721 608-28973

Selected Publications


Influence of Grain Size on the Electrochemical Performance of LiLaZrAlO Solid Electrolyte
Botros, M.; Gonzalez-Julian, J.; Scherer, T.; Popescu, R.; Loho, C.; Kilmametov, A.; Clemens, O.; Hahn, H.
2024. Batteries & Supercaps, 7 (11), e202300370. doi:10.1002/batt.202300370
Dealing with Missing Angular Sections in NanoCT Reconstructions of Low Contrast Polymeric Samples Employing a Mechanical In Situ Loading Stage
Debastiani, R.; Kurpiers, C. M.; Lemma, E. D.; Breitung, B.; Bastmeyer, M.; Schwaiger, R.; Gumbsch, P.
2024. Microscopy Research and Technique. doi:10.1002/jemt.24746
Delithiation-induced secondary phase formation in Li-rich cathode materials
Ting, Y.-Y.; Breitung, B.; Schweidler, S.; Wang, J.; Eikerling, M.; Kowalski, P. M.; Guillon, O.; Kaghazchi, P.
2024. Journal of Materials Chemistry A. doi:10.1039/D4TA06030J
Improving upon rechargeable battery technologies: On the role of high-entropy effects
Zhou, Z.; Ma, Y.; Brezesinski, T.; Breitung, B.; Wu, Y.; Ma, Y.
2024. Energy & Environmental Science. doi:10.1039/D4EE03708A
Electron microscopic investigation of photothermal laser printed ZnO nanoarchitectures
Kraft, K.; Grünewald, L.; Quintilla, A.; Müller, E.; Steurer, M.; Somers, P.; Kraus, S.; Feist, F.; Weinert, B.; Breitung, B.; Marques, G. C.; Dehnen, S.; Feldmann, C.; Kowollik, C. B.; Wegener, M.; Aghassi, J.; Eggeler, Y.
2024. (K. Qvortrup & K. Weede, Eds.) BIO Web of Conferences, 129, Article no: 24028. doi:10.1051/bioconf/202412924028
Layered high-entropy sulfides: boosting electrocatalytic performance for hydrogen evolution reaction by cocktail effects
Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Chen, D.-H.; Fichtner, M.; Hahn, H.; Aghassi-Hagmann, J.; Breitung, B.; Schweidler, S.
2024. Materials Futures, 3 (4), Article no: 045102. doi:10.1088/2752-5724/ad8a78
Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)₃O₄ as a Graphite Alternative in Lithium-Ion Batteries
Oroszová, L.; Csík, D.; Baranová, G.; Bortel, G.; Džunda, R.; Temleitner, L.; Hagarová, M.; Breitung, B.; Saksl, K.
2024. Crystals, 14 (3), Article no: 218. doi:10.3390/cryst14030218
Recent progress in the laser microprinting of semiconductors and metals
Somers, P.; Steurer, M.; Kraus, S.; Feist, F.; Breitung, B.; Marques, G. C.; Weinert, B.; Dolle, C.; Müller, E.; Aghassi-Hagmann, J.; Dehnen, S.; Eggeler, Y.; Feldmann, C.; Barner-Kowollik, C.; Wegener, M.
2024. 29th Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM 2024). Ed.: L. Gemini, 18, SPIE. doi:10.1117/12.2692064
Improved Performance of High‐Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li‐Ion Batteries
Zhou, B.; An, S.; Kitsche, D.; Dreyer, S. L.; Wang, K.; Huang, X.; Thanner, J.; Bianchini, M.; Brezesinski, T.; Breitung, B.; Hahn, H.; Wang, Q.
2024. Small Structures, 5 (7), Art.-Nr.: 2400005. doi:10.1002/sstr.202400005
Nanozymes for biomedical applications: Multi‐metallic systems may improve activity but at the cost of higher toxicity?
Phan-Xuan, T.; Breitung, B.; Dailey, L. A.
2024. WIREs Nanomedicine and Nanobiotechnology, 16 (4), Article no: e1981. doi:10.1002/wnan.1981
A Comprehensive Guide to Fully Inkjet‐Printed IGZO Transistors
Magnarin, L.; Breitung, B.; Aghassi-Hagmann, J.
2024. Advanced Electronic Materials, Art.-Nr.: 2400478. doi:10.1002/aelm.202400478
Leveraging Entropy and Crystal Structure Engineering in Prussian Blue Analogue Cathodes for Advancing Sodium-Ion Batteries
He, Y.; Dreyer, S. L.; Akçay, T.; Diemant, T.; Mönig, R.; Ma, Y.; Tang, Y.; Wang, H.; Lin, J.; Schweidler, S.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Ma, Y.
2024. ACS Nano, 18 (35), 24441–24457. doi:10.1021/acsnano.4c07528
Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles
Cui, Y.; Tang, Y.; Lin, J.; Wang, J.; Hahn, H.; Breitung, B.; Schweidler, S.; Brezesinski, T.; Botros, M.
2024. Small Structures, 5 (11), Art.-Nr.: 2400197. doi:10.1002/sstr.202400197
Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance
Phan-Xuan, T.; Schweidler, S.; Hirte, S.; Schüller, M.; Lin, L.; Khandelwal, A.; Wang, K.; Schützke, J.; Reischl, M.; Kübel, C.; Hahn, H.; Bello, G.; Kirchmair, J.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.; Dailey, L. A.
2024. ACS Nano, 18 (29), 19024–19037. doi:10.1021/acsnano.4c03053
Influence of Zr-doping on the structure and transport properties of rare earth high-entropy oxides
Kante, M. V.; Lakshmi Nilayam, A. R.; Kreka, K.; Hahn, H.; Bhattacharya, S. S.; Velasco, L.; Tarancón, A.; Kübel, C.; Schweidler, S.; Botros, M.
2024. Journal of Physics: Energy, 6 (3), Art.-Nr.: 035001. doi:10.1088/2515-7655/ad423c
Influence of Zr-doping on structure and transport properties of rare earth high-entropy oxides
Kante, M. V.; Botros, M.; Schweidler, S.; Raj Lakshmi Nilayam, A.
2024, April 29. doi:10.35097/GcZKqFdyZsBbHMjv
High-entropy and compositionally complex battery materials
Strauss, F.; Botros, M.; Breitung, B.; Brezesinski, T.
2024. Journal of Applied Physics, 135 (12), Art.-Nr.: 120901. doi:10.1063/5.0200031
Elucidation of the Transport Properties of Calcium‐Doped High Entropy Rare Earth Aluminates for Solid Oxide Fuel Cell Applications
Kante, M. V.; Nilayam, L. A. R. L.; Hahn, H.; Bhattacharya, S. S.; Elm, M. T.; Velasco, L.; Botros, M.
2024. Small, Art.-Nr.: 2309735. doi:10.1002/smll.202309735
Entropy-assisted epitaxial coating
Schweidler, S.; Brezesinski, T.; Breitung, B.
2024. Nature Energy, 9 (3), 240–241. doi:10.1038/s41560-024-01468-z
Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes (Adv. Mater. Technol. 22/2023)
Cadilha Marques, G.; Yang, L.; Liu, Y.; Wollersen, V.; Scherer, T.; Breitung, B.; Wegener, M.; Aghassi-Hagmann, J.
2023. Advanced Materials Technologies, 8 (22), Art.-Nr.: 2370121. doi:10.1002/admt.202370121
High-entropy materials for energy and electronic applications
Schweidler, S.; Botros, M.; Strauss, F.; Wang, Q.; Ma, Y.; Velasco, L.; Cadilha Marques, G.; Sarkar, A.; Kübel, C.; Hahn, H.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.
2024. Nature Reviews Materials, 9 (4), 266–281. doi:10.1038/s41578-024-00654-5
Dealing with missing angular sections in nanoCT reconstructions of low contrast polymeric samples employing a mechanical in situ loading stage
Debastiani, R.; Kurpiers, C. M.; Lemma, E. D.; Breitung, B.; Bastmeyer, M.; Schwaiger, R.; Gumbsch, P.
2023. arxiv. doi:10.48550/arXiv.2312.16208
Accelerating Materials Discovery: Automated Identification of Prospects from X‐Ray Diffraction Data in Fast Screening Experiments
Schuetzke, J.; Schweidler, S.; Muenke, F. R.; Orth, A.; Khandelwal, A. D.; Breitung, B.; Aghassi-Hagmann, J.; Reischl, M.
2024. Advanced Intelligent Systems, 6 (3), Art.-Nr.: 2300501. doi:10.1002/aisy.202300501
Printed Electronic Devices and Systems for Interfacing with Single Cells up to Organoids
Saghafi, M. K.; Vasantham, S. K.; Hussain, N.; Mathew, G.; Colombo, F.; Schamberger, B.; Pohl, E.; Marques, G. C.; Breitung, B.; Tanaka, M.; Bastmeyer, M.; Selhuber-Unkel, C.; Schepers, U.; Hirtz, M.; Aghassi-Hagmann, J.
2023. Advanced Functional Materials, 33 (51), Art.-Nr.: 2308613. doi:10.1002/adfm.202308613
Entropy‐Mediated Stable Structural Evolution of Prussian White Cathodes for Long‐Life Na‐Ion Batteries
He, Y.; Dreyer, S. L.; Ting, Y.-Y.; Ma, Y.; Hu, Y.; Goonetilleke, D.; Tang, Y.; Diemant, T.; Zhou, B.; Kowalski, P. M.; Fichtner, M.; Hahn, H.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.; Ma, Y.
2024. Angewandte Chemie International Edition, 63 (7), Art.-Nr.: e202315371. doi:10.1002/anie.202315371
High entropy molybdate-derived FeOOH catalyzes oxygen evolution reaction in alkaline media
Lee, S.; Bai, L.; Jeong, J.; Stenzel, D.; Schweidler, S.; Breitung, B.
2023. Electrochimica Acta, 463, 142775. doi:10.1016/j.electacta.2023.142775
High-Entropy Composite Coating Based on AlCrFeCoNi as an Anode Material for Li-Ion Batteries
Csík, D.; Baranová, G.; Džunda, R.; Zalka, D.; Breitung, B.; Hagarová, M.; Saksl, K.
2023. Coatings, 13 (7), 1219. doi:10.3390/coatings13071219
Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes
Cadilha Marques, G.; Yang, L.; Liu, Y.; Wollersen, V.; Scherer, T.; Breitung, B.; Wegener, M.; Aghassi-Hagmann, J.
2023. Advanced Materials Technologies, 8 (22), Art.-Nr.: 2300893. doi:10.1002/admt.202300893
High-entropy hexacyanoferrates as robust cathode active materials for sodium storage
Ma, Y.; Brezesinski, T.; Breitung, B.; Ma, Y.
2023. Matter, 6 (2), 313–315. doi:10.1016/j.matt.2023.01.008
Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Properties
Hu, H.; Scholz, A.; Dolle, C.; Zintler, A.; Quintilla, A.; Liu, Y.; Tang, Y.; Breitung, B.; Marques, G. C.; Eggeler, Y. M. M.; Aghassi-Hagmann, J.
2024. Advanced Functional Materials, 34 (20), Art.Nr.: 2302290. doi:10.1002/adfm.202302290
High‐Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction
Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Kante, M. V. V.; Agrawal, D.; Hahn, H.; Aghassi-Hagmann, J.; Fichtner, M.; Breitung, B.; Schweidler, S.
2023. Small Structures, 4 (9), Art.-Nr.: 2300012. doi:10.1002/sstr.202300012
High‐Throughput Screening of High‐Entropy Fluorite‐Type Oxides as Potential Candidates for Photovoltaic Applications
Kumbhakar, M.; Khandelwal, A.; Jha, S. K.; Kante, M. V.; Keßler, P.; Lemmer, U.; Hahn, H.; Aghassi-Hagmann, J.; Colsmann, A.; Breitung, B.; Velasco, L.; Schweidler, S.
2023. Advanced Energy Materials, 13 (24), Art.-Nr.: 2204337. doi:10.1002/aenm.202204337
High-Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction
Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Kante, M. V.; Agrawal, D.; Hahn, H.; Aghassi, J.; Fichtner, M.; Breitung, B.; Schweidler, S.
2023, May 16. doi:10.5445/IR/1000158543
Synergy of cations in high entropy oxide lithium ion battery anode
Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B.; Kübel, C.; Mu, X.
2023. Nature Communications, 14, Art.-Nr.: 1487. doi:10.1038/s41467-023-37034-6
Embracing disorder in solid-state batteries
Botros, M.; Janek, J.
2022. Science, 378 (6626), 1273–1274. doi:10.1126/science.adf3383
P2-type layered high-entropy oxides as sodium-ion cathode materials
Wang, J.; Dreyer, S. L.; Wang, K.; Ding, Z.; Diemant, T.; Karkera, G.; Ma, Y.; Sarkar, A.; Zhou, B.; Gorbunov, M. V.; Omar, A.; Mikhailova, D.; Presser, V.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Wang, Q.
2022. Materials Futures, 1 (3), Art.Nr. 035104. doi:10.1088/2752-5724/ac8ab9
Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
Schweidler, S.; Tang, Y.; Lin, L.; Karkera, G.; Alsawaf, A.; Bernadet, L.; Breitung, B.; Hahn, H.; Fichtner, M.; Tarancón, A.; Botros, M.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 983979. doi:10.3389/fenrg.2022.983979
Synergy of cations in high entropy oxide lithium ion battery anode
Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B.; Kübel, C.; Mu, X.
2023, January 11. doi:10.5445/IR/1000154295
High entropy fluorides as conversion cathodes with tailorable electrochemical performance
Cui, Y.; Sukkurji, P. A.; Wang, K.; Azmi, R.; Nunn, A. M.; Hahn, H.; Breitung, B.; Ting, Y.-Y.; Kowalski, P. M.; Kaghazchi, P.; Wang, Q.; Schweidler, S.; Botros, M.
2022. Journal of Energy Chemistry, 72, 342–351. doi:10.1016/j.jechem.2022.05.032
High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst
Stenzel, D.; Zhou, B.; Okafor, C.; Kante, M. V.; Lin, L.; Melinte, G.; Bergfeldt, T.; Botros, M.; Hahn, H.; Breitung, B.; Schweidler, S.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 942314. doi:10.3389/fenrg.2022.942314
Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries
Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W.; Fichtner, M.; Ma, Y.; Breitung, B.; Brezesinski, T.
2022. Advanced Functional Materials, 32 (34), Art.Nr. 2202372. doi:10.1002/adfm.202202372
Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation
Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
2022. Coatings, 12 (3), 402. doi:10.3390/coatings12030402
Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
Wang, L.; Torkamanzadeh, M.; Majed, A.; Zhang, Y.; Wang, Q.; Breitung, B.; Feng, G.; Naguib, M.; Presser, V.
2022. Advanced sustainable systems, 6 (3), Artk.Nr:: 2100383. doi:10.1002/adsu.202100383
High-Entropy Sulfides as Electrode Materials for Li-Ion Batteries
Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; Breitung, B.
2022. Advanced Energy Materials, 12 (8), Art.-Nr. 2103090. doi:10.1002/aenm.202103090
Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode
Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
2021. Scientific reports, 11 (1), Article no: 23381. doi:10.1038/s41598-021-02685-2
High‐Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next‐Generation Synthesis and Applications
Wang, Q.; Velasco, L.; Breitung, B.; Presser, V.
2021. Advanced energy materials, 11 (47), Art. Nr.: 2102355. doi:10.1002/aenm.202102355
High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage
Ma, Y.; Ma, Y.; Dreyer, S. L.; Wang, Q.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B.; Brezesinski, T.
2021. Advanced Materials, 33 (34), Art. Nr.: 2101342. doi:10.1002/adma.202101342
High-entropy energy materials: Challenges and new opportunities
Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B.
2021. Energy and Environmental Science, 14 (5), 2883–2905. doi:10.1039/d1ee00505g
Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis
Sukkurji, P. A.; Cui, Y.; Lee, S.; Wang, K.; Azmi, R.; Sarkar, A.; Indris, S.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Wang, Q.; Botros, M.; Breitung, B.
2021. Journal of Materials Chemistry A, 9 (14), 8998–9009. doi:10.1039/d0ta10209a
High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates
Stenzel, D.; Issac, I.; Wang, K.; Azmi, R.; Singh, R.; Jeong, J.; Najib, S.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.; Schweidler, S.; Breitung, B.
2021. Inorganic chemistry, 60 (1), 115–123. doi:10.1021/acs.inorgchem.0c02501
Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors
Jeong, J.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2020. ChemElectroChem, 7 (13), 2735–2739. doi:10.1002/celc.202000305
Spinel to Rock-Salt Transformation in High Entropy Oxides with Li Incorporation
Wang, J.; Stenzel, D.; Azmi, R.; Najib, S.; Wang, K.; Jeong, J.; Sarkar, A.; Wang, Q.; Sukkurji, P. A.; Bergfeldt, T.; Botros, M.; Maibach, J.; Hahn, H.; Brezesinski, T.; Breitung, B.
2020. Electrochem, 1 (1), 60–74. doi:10.3390/electrochem1010007
Lithium containing layered high entropy oxide structures
Wang, J.; Cui, Y.; Wang, Q.; Wang, K.; Huang, X.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Schweidler, S.; Brezesinski, T.; Breitung, B.
2020. Scientific reports, 10, Art.-Nr.: 18430. doi:10.1038/s41598-020-75134-1
Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides
Lin, L.; Wang, K.; Azmi, R.; Wang, J.; Sarkar, A.; Botros, M.; Najib, S.; Cui, Y.; Stenzel, D.; Anitha Sukkurji, P.; Wang, Q.; Hahn, H.; Schweidler, S.; Breitung, B.
2020. Journal of materials science, 55, 16879–16889. doi:10.1007/s10853-020-05183-4
High entropy oxides: The role of entropy, enthalpy and synergy
Sarkar, A.; Breitung, B.; Hahn, H.
2020. Scripta materialia, 187, 43–48. doi:10.1016/j.scriptamat.2020.05.019
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry
Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
On the homogeneity of high entropy oxides: An investigation at the atomic scale
Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039
High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties
Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
2019. Advanced materials, 1806236. doi:10.1002/adma.201806236
High entropy oxides as anode material for Li-ion battery applications: A practical approach
Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
High entropy oxides for reversible energy storage
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; Biasi, L. de; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B.
2018. Nature Communications, 9 (1), Article number: 3400. doi:10.1038/s41467-018-05774-5